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Recap: Naïve Bayes classifier

• 𝑓 𝑋 = 𝑎𝑟𝑔𝑚𝑎𝑥!𝑃 𝑦 𝑋
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= 𝑎𝑟𝑔𝑚𝑎𝑥!𝑃 𝑋 𝑦 𝑃(𝑦)

= 𝑎𝑟𝑔𝑚𝑎𝑥!-
"#$

%

𝑃(𝑥"|𝑦) 𝑃 𝑦

Class conditional density Class prior

#parameters: 𝑌 − 1𝑌 ×𝑉

𝑌 ×(2! − 1)

v.s.
Computationally feasible



Today’s lecture

• Logistic regression model
– A discriminative classification model
– Two different perspectives to derive the model
– Parameter estimation
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Review: Bayes risk minimization

• Risk – assign instance to a wrong class
– 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥"𝑃(𝑦|𝑋)
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𝑋

𝑝(𝑋, 𝑦)

𝑝 𝑋 𝑦 = 1 𝑝(𝑦 = 1)𝑝 𝑋 𝑦 = 0 𝑝(𝑦 = 0)

/𝑦 = 0 /𝑦 = 1

False positiveFalse negative

*Optimal Bayes decision boundary

We have learned multiple 
ways to estimate this



Instance-based solution

• k nearest neighbors
– Approximate Bayes decision rule in a subset of 

data around the testing point
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Instance-based solution

• k nearest neighbors
– Approximate Bayes decision rule in a subset of 

data around the testing point
– Let 𝑉 be the volume of the 𝑚 dimensional ball 

around 𝑥 containing the 𝑘 nearest neighbors for 𝑥, 
we have
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𝑝 𝑥|𝑦 = 1 =
𝑘"
𝑁"𝑉

𝑝 𝑦 = 1 =
𝑁"
𝑁

With Bayes rule:
𝑝 𝑦 = 1|𝑥 =

𝑁"
𝑁 × 𝑘"

𝑁"𝑉
𝑘
𝑁𝑉

=
𝑘"
𝑘

𝑝 𝑥 𝑉 =
𝑘
𝑁 𝑝 𝑥 =

𝑘
𝑁𝑉

=>

Total number of instances
Total number of 
instances in class 1

Counting the nearest 
neighbors from class1



Generative solution

• Naïve Bayes classifier
– 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥"𝑃 𝑦 𝑋
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= 𝑎𝑟𝑔𝑚𝑎𝑥"𝑃 𝑋 𝑦 𝑃(𝑦)

= 𝑎𝑟𝑔𝑚𝑎𝑥"/
#$%

|'|

𝑃(𝑥#|𝑦) 𝑃 𝑦

By Bayes rule

By independence 
assumptiony

x2 x3 xvx1 …



Estimating parameters

• Maximial likelihood estimator

– 𝑃 𝑥# 𝑦 =
∑! ∑" )(+!

"$+#,"!$")

∑! )("!$")

– 𝑃(𝑦) = ∑! )("!$")
∑! %
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text information identify mining mined is useful to from apple delicious Y

D1 1 1 1 1 0 1 1 1 0 0 0 1

D2 1 1 0 0 1 1 1 0 1 0 0 1

D3 0 0 0 0 0 1 0 0 0 1 1 0



Discriminative v.s. generative models
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All instances are considered for 
probability density estimation

More attention will be put 
onto the boundary points

𝑦 = 𝑓(𝑥)



Parametric form of decision boundary 
in Naïve Bayes

• For binary cases
– 𝑓 𝑋 = 𝑠𝑔𝑛(log 𝑃 𝑦 = 1 𝑋 − log 𝑃(𝑦 = 0|𝑋))
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= 𝑠𝑔𝑛 log
𝑃 𝑦 = 1
𝑃 𝑦 = 0 +1

456
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𝑐 𝑥4, 𝑑 log
𝑃 𝑥4 𝑦 = 1
𝑃 𝑥4 𝑦 = 0

= 𝑠𝑔𝑛(𝑤8 6𝑋)
where

𝑤 = log
𝑃 𝑦 = 1
𝑃 𝑦 = 0 , log

𝑃 𝑥" 𝑦 = 1
𝑃 𝑥" 𝑦 = 0 ,… , log

𝑃 𝑥# 𝑦 = 1
𝑃 𝑥# 𝑦 = 0

?𝑋 = (1, 𝑐(𝑥", 𝑑), … , 𝑐(𝑥# , 𝑑))

Linear regression?



Regression for classification?

• Linear regression
– 𝑦 ← 𝑤.𝑋
– Relationship between a scalar dependent variable 
𝑦 and one or more explanatory variables
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Regression for classification?

• Linear regression
– 𝑦 ← 𝑤.𝑋
– Relationship between a scalar dependent variable 
𝑦 and one or more explanatory variables
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Optimal 
regression model

x

y

𝑦 = 11 𝑤!𝑋 > 0.5
0 𝑤!𝑋 ≤ 0.5

Y is discrete in a 
classification problem!

What if we have 
an outlier? 

1.00

0.50

0.25

0.00

0.75



Regression for classification?

• Logistic regression

– 𝑝 𝑦 𝑥 = 𝜎 𝑤.𝑋 = %
%:;<=(>?$@)

– Directly modeling of class posterior

13

x

P(y|x)

1.00

0.50

0.25

0.00

0.75

What if we have 
an outlier? 

Sigmoid function



Logistic regression for classification

• Why sigmoid function?
– 𝑃 𝑦 = 1 𝑋 = " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 1 " $%& (" 𝑋 𝑦 = 0 "($%))
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x

P(y|x)

1.00

0.50

0.25

0.00

0.75

=
1

1 + 𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)
𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)

𝑃 𝑦 = 1 = 𝛼

Binomial

𝑃 𝑋 𝑦 = 1 = 𝑁(𝜇", 𝛿$)

𝑃 𝑋 𝑦 = 0 = 𝑁(𝜇%, 𝛿$)

Normal with identical variance



Logistic regression for classification

• Why sigmoid function?
– 𝑃 𝑦 = 1 𝑋 = " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 1 " $%& (" 𝑋 𝑦 = 0 "($%))
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=
1

1 + 𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)
𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)

=
1

1 + exp − ln𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)
𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)



Logistic regression for classification

• Why sigmoid function?
§ ln " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 0 "($%))
= ln "($%&)

"($%))
+ ∑*%&+ ln "(,!|$%&)

"(,!|$%))
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= ln
𝛼

1 − 𝛼
+J

*%&

+
𝜇&* − 𝜇)*

𝛿*.
𝑥* −

𝜇&*. − 𝜇)*.

2𝛿*.

𝑃 𝑥 𝑦 =
1

𝛿 2𝜋
𝑒&

'&( !

$)!

= 𝑤) +J
*%&

+
𝜇&* − 𝜇)*

𝛿*.
𝑥*

= 𝑤) + 𝑤!𝑋

= O𝑤! P𝑋

Origin of the name: 
logit function



Logistic regression for classification

• Why sigmoid function?
– 𝑃 𝑦 = 1 𝑋 = " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 1 " $%& (" 𝑋 𝑦 = 0 "($%))
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=
1

1 + 𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)
𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)

=
1

1 + exp(−O𝑤! P𝑋)

Note: it is still a linear relation among the features!

=
1

1 + exp − ln𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)
𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)

Generalized Linear Model



Logistic regression for classification

• For multi-class categorization

– 𝑃 𝑦 = 𝑘 𝑋 = ;<=(?%
$@)

∑"&'
( ;<=(?"

$@)

– 𝑃 𝑦 = 𝑘 𝑋 ∝ exp(𝑤Q.𝑋)
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Warning: redundancy in model parameters, 
since ∑*+", 𝑃(𝑦 = 𝑗|𝑋) = 1

𝑃 𝑦 = 1 𝑋 =
exp(𝑤"-𝑋)

exp(𝑤"-𝑋) + exp(𝑤%-𝑋)

When 𝐾=2,

=
1

1 + exp(− 𝑤" − 𝑤% -𝑋) N𝑤

y

x2 x3 xvx1 …



Logistic regression for classification

• Decision boundary for binary case

– !𝑦 = $1, 𝑝 𝑦 = 1 𝑋 > 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– !𝑦 = $1, 𝑤!𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑝 𝑦 = 1 𝑋 =
1

1 + exp(−𝑤!𝑋)
> 0.5

i.f.f.
exp −𝑤-𝑋 < 1

i.f.f.
𝑤-𝑋 > 0

A linear model!



Logistic regression for classification

• Decision boundary in general
– A𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥"𝑝 𝑦 𝑋
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= 𝑎𝑟𝑔𝑚𝑎𝑥"𝑤".𝑋

A linear model!

= 𝑎𝑟𝑔𝑚𝑎𝑥" exp(𝑤".𝑋)



Logistic regression for classification

• Summary
– 𝑃 𝑦 = 1 𝑋 = " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 1 " $%& (" 𝑋 𝑦 = 0 "($%))
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x

P(y|x)

1.00

0.50

0.25

0.00

0.75

=
1

1 + 𝑃 𝑋 𝑦 = 0 𝑃(𝑦 = 0)
𝑃 𝑋 𝑦 = 1 𝑃(𝑦 = 1)

𝑃 𝑦 = 1 = 𝛼

Binomial

𝑃 𝑋 𝑦 = 1 = 𝑁(𝜇", 𝛿$)

𝑃 𝑋 𝑦 = 0 = 𝑁(𝜇%, 𝛿$)

Normal with identical variance



Recap: Logistic regression for 
classification

• Decision boundary for binary case

– !𝑦 = $1, 𝑝 𝑦 = 1 𝑋 > 0.5
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– !𝑦 = $1, 𝑤!𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑝 𝑦 = 1 𝑋 =
1

1 + exp(−𝑤!𝑋)
> 0.5

i.f.f.
exp −𝑤-𝑋 < 1

i.f.f.
𝑤-𝑋 > 0

A linear model!



Recap: Logistic regression for 
classification

• Why sigmoid function?
§ ln " 𝑋 𝑦 = 1 "($%&)

" 𝑋 𝑦 = 0 "($%))
= ln "($%&)

"($%))
+ ∑*%&+ ln "(,!|$%&)

"(,!|$%))

23

= ln
𝛼

1 − 𝛼
+J

*%&

+
𝜇&* − 𝜇)*

𝛿*.
𝑥* −

𝜇&*. − 𝜇)*.

2𝛿*.

𝑃 𝑥 𝑦 =
1

𝛿 2𝜋
𝑒&

'&( !

$)!

= 𝑤) +J
*%&

+
𝜇&* − 𝜇)*

𝛿*.
𝑥*

= 𝑤) + 𝑤!𝑋

= O𝑤! P𝑋

Origin of the name: 
logit function



Recap: parametric form of decision 
boundary in Naïve Bayes

• For binary cases
– 𝑓 𝑋 = 𝑠𝑔𝑛(log 𝑃 𝑦 = 1 𝑋 − log 𝑃(𝑦 = 0|𝑋))

24

= 𝑠𝑔𝑛 log
𝑃 𝑦 = 1
𝑃 𝑦 = 0 +1

456

7

𝑐 𝑥4, 𝑑 log
𝑃 𝑥4 𝑦 = 1
𝑃 𝑥4 𝑦 = 0

= 𝑠𝑔𝑛(𝑤8 6𝑋)
where

𝑤 = log
𝑃 𝑦 = 1
𝑃 𝑦 = 0 , log

𝑃 𝑥" 𝑦 = 1
𝑃 𝑥" 𝑦 = 0 ,… , log

𝑃 𝑥# 𝑦 = 1
𝑃 𝑥# 𝑦 = 0

?𝑋 = (1, 𝑐(𝑥", 𝑑), … , 𝑐(𝑥# , 𝑑))

Linear regression?



A different perspective 

• Imagine we have the following
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“happy”, “good”, “purchase”, “item”, “indeed” positive

Documents Sentiment

𝑝 𝑥 = "happy", 𝑦 = 1 + 𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒", 𝑦 = 1
+𝑝 𝑥 = "item", 𝑦 = 1 + 𝑝 𝑥 = "𝑖𝑛𝑑𝑒𝑒𝑑", 𝑦 = 1 = 1

Question: find a distribution 𝑝(𝑥, 𝑦) that satisfies this observation.

𝑝 𝑥 = "item", 𝑦 = 1 = 1, and all the others 0Answer1: 

𝑝 𝑥 = "indeed", 𝑦 = 1 = 0.5, 𝑝 𝑥 = "good", 𝑦 = 1 = 0.5, and all the others 0Answer2: 

We have too little information to favor either one of them.



Occam's razor

• A problem-solving principle
– “among competing hypotheses that predict 

equally well, the one with the fewest assumptions 
should be selected.”
• William of Ockham (1287–1347)

– Principle of Insufficient Reason: "when one has no 
information to distinguish between the probability 
of two events, the best strategy is to consider 
them equally likely”
• Pierre-Simon Laplace (1749–1827)
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A different perspective 

• Imagine we have the following
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“happy”, “good”, “purchase”, “item”, “indeed” positive

Documents Sentiment

𝑝 𝑥 = "happy", 𝑦 = 1 + 𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒", 𝑦 = 1
+𝑝 𝑥 = "item", 𝑦 = 1 + 𝑝 𝑥 = "𝑖𝑛𝑑𝑒𝑒𝑑", 𝑦 = 1 = 1

Question: find a distribution 𝑝(𝑥, 𝑦) that satisfies this observation.

As a result, a safer choice would be:  

𝑝 𝑥 = " ⋅ ", 𝑦 = 1 = 0.2

Equally favor every possibility



A different perspective 

• Imagine we have the following
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“happy”, “good”, “purchase”, “item”, “indeed” positive

Observations Sentiment

𝑝 𝑥 = "happy", 𝑦 = 1 + 𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒", 𝑦 = 1
+𝑝 𝑥 = "item", 𝑦 = 1 + 𝑝 𝑥 = "𝑖𝑛𝑑𝑒𝑒𝑑", 𝑦 = 1 = 1

Question: find a distribution 𝑝(𝑥, 𝑦) that satisfies this observation.

Equally favor every possibility

30% of time “good”, “item” positive

𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "item", 𝑦 = 1 = 0.3

Again, a safer choice would be:  

𝑝 𝑥 = "𝑔𝑜𝑜𝑑", 𝑦 = 1 = 𝑝 𝑥 = "𝑖𝑡𝑒𝑚", 𝑦 = 1 = 0.15, and all the others .
/%



A different perspective 

• Imagine we have the following
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“happy”, “good”, “purchase”, “item”, “indeed” positive

Observations Sentiment

𝑝 𝑥 = "happy", 𝑦 = 1 + 𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒", 𝑦 = 1
+𝑝 𝑥 = "item", 𝑦 = 1 + 𝑝 𝑥 = "𝑖𝑛𝑑𝑒𝑒𝑑", 𝑦 = 1 = 1

Question: find a distribution 𝑝(𝑥, 𝑦) that satisfies this observation.

30% of time “good”, “item” positive

𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "item", 𝑦 = 1 = 0.3

50% of time “good”, “happy” positive

𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "happy", 𝑦 = 1 = 0.5

1) what do we mean by equally/uniformly favoring the models? 
Time to think about: 

2) given all these constraints, how could we find the most preferred model?



Maximum entropy modeling

• A measure of uncertainty of random events
– 𝐻 𝑋 = 𝐸 𝐼 𝑋 = −∑+∈@ 𝑃 𝑥 log 𝑃(𝑥)

30

Maximized when P(X) is 
a uniform distribution

Question 1 is answered, then 
how about question 2?



Represent the constraints

• Indicator function
– E.g., to express the observation that word ‘good’ 

occurs in a positive document

• 𝑓 𝑥, 𝑦 = 810

– Usually referred as feature function 

31

if 𝑦 = 1 and 𝑥 = ‘𝑔𝑜𝑜𝑑’
otherwise



Represent the constraints

• Empirical expectation of feature function over 
a corpus
– 𝐸[ G𝑝 𝑓 ] = ∑+," G𝑝 𝑥, 𝑦 𝑓(𝑥, 𝑦)

• Expectation of feature function under a given 
statistical model
– 𝐸[𝑝 𝑓 ] = ∑+," G𝑝 𝑥 𝑝(𝑦|𝑥)𝑓(𝑥, 𝑦)

32

where  <𝑝 𝑥, 𝑦 = h(i(j,k))
l

i.e., frequency of observing 
𝑓(𝑥, 𝑦) in a given collection. 

Empirical distribution of 𝑥
in the same collection. 

Model’s estimation of 
conditional distribution. 



Represent the constraints

• When a feature is important, we require our 
preferred statistical model to accord with it
– 𝐶 ≔ 𝑝 ∈ 𝑃|𝐸[𝑝 𝑓# ] = 𝐸[ G𝑝 𝑓# ], ∀𝑖 ∈ {1,2, … , 𝑛}
– 𝐸[𝑝 𝑓# ] = 𝐸[ G𝑝 𝑓# ]

33

1
j,k

<𝑝 𝑥, 𝑦 𝑓4 𝑥, 𝑦 =1
j,k

<𝑝 𝑥 𝑝 𝑦 𝑥 𝑓4(𝑥, 𝑦)

We only need to specify this in 
our preferred model!

Is Question 2 answered?



Represent the constraints

• Let’s visualize this

34

(a) No constraint (b) Under constrained

(c) Feasible constraint (d) Over constrained

How to deal with 
these situations?



Maximum entropy principle

• To select a model from a set 𝐶 of allowed 
probability distributions, choose the model 
𝑝∗ ∈ 𝐶 with maximum entropy 𝐻(𝑝)

35

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥'∈)𝐻(𝑝)

𝑝(𝑦|𝑥)

Both questions are answered!



Maximum entropy principle

• Let’s solve this constrained optimization 
problem with Lagrange multipliers

36

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥'∈)𝐻(𝑝)
Primal:

Lagrangian:

𝐿 𝑝, 𝜆 = 𝐻 𝑝 +V
#

𝜆#(𝑝 𝑓# − G𝑝 𝑓# )

a strategy for finding the local 
maxima and minima of a function 
subject to equality constraints



Maximum entropy principle

• Let’s solve this constrained optimization 
problem with Lagrange multipliers

37

Lagrangian:

𝐿 𝑝, 𝜆 = 𝐻 𝑝 +V
#

𝜆#(𝑝 𝑓# − G𝑝 𝑓# )

Dual:

Ψ 𝜆 = −V
+

G𝑝 𝑥 log 𝑍V 𝑥 +V
#

𝜆# G𝑝 𝑓#

𝑝V(𝑦|𝑥) =
1

𝑍V 𝑥
exp V

#

𝜆#𝑓#(𝑥, 𝑦)



Maximum entropy principle

• Let’s solve this constrained optimization 
problem with Lagrange multipliers

38

Dual:

Ψ 𝜆 = −V
+

G𝑝 𝑥 log 𝑍V 𝑥 +V
#

𝜆# G𝑝 𝑓#
where

ZV =V
"
exp V

#

𝜆#𝑓#(𝑥, 𝑦)



Maximum entropy principle

• Let’s take a close look at the dual function

39

Ψ 𝜆 = −V
+

G𝑝 𝑥 log 𝑍V 𝑥 +V
#

𝜆# G𝑝 𝑓#
where

ZV =V
"
exp V

#

𝜆#𝑓#(𝑥, 𝑦)



Maximum entropy principle

• Let’s take a close look at the dual function
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Ψ 𝜆 = −V
+

G𝑝 𝑥 log 𝑍V 𝑥 +V
+

G𝑝 𝑥 V
#

𝜆# G𝑝 𝑓#

=V
+

G𝑝 𝑥 log
exp(∑# 𝜆# G𝑝 𝑓# )

𝑍V 𝑥

=V
+

G𝑝 𝑥 log 𝑝(𝑦|𝑥)

Maximum likelihood estimator!



Maximum entropy principle

• Primal: maximum entropy
– 𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥W∈X𝐻(𝑝)

• Dual: logistic regression

– 𝑝V(𝑦|𝑥) =
%

Y) +
exp ∑# 𝜆#𝑓#(𝑥, 𝑦)
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where ZV =V
"
exp V

#

𝜆#𝑓#(𝑥, 𝑦)

𝜆∗ is determined by Ψ(𝜆)



Questions haven’t been answered

• Class conditional density
– Why it should be Gaussian with equal variance?

• Model parameters
– What is the relationship between 𝑤 and 𝜆?
– How to estimate them?
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Recap: Occam's razor

• A problem-solving principle
– “among competing hypotheses that predict 

equally well, the one with the fewest assumptions 
should be selected.”
• William of Ockham (1287–1347)

– Principle of Insufficient Reason: "when one has no 
information to distinguish between the probability 
of two events, the best strategy is to consider 
them equally likely”
• Pierre-Simon Laplace (1749–1827)
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Recap: a different perspective 

• Imagine we have the following

44

“happy”, “good”, “purchase”, “item”, “indeed” positive

Observations Sentiment

𝑝 𝑥 = "happy", 𝑦 = 1 + 𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒", 𝑦 = 1
+𝑝 𝑥 = "item", 𝑦 = 1 + 𝑝 𝑥 = "𝑖𝑛𝑑𝑒𝑒𝑑", 𝑦 = 1 = 1

Question: find a distribution 𝑝(𝑥, 𝑦) that satisfies this observation.

30% of time “good”, “item” positive

𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "item", 𝑦 = 1 = 0.3

50% of time “good”, “happy” positive

𝑝 𝑥 = "good", 𝑦 = 1 + 𝑝 𝑥 = "happy", 𝑦 = 1 = 0.5

1) what do we mean by equally/uniformly favoring the models? 
Time to think about: 

2) given all these constraints, how could we find the most preferred model?



Recap: maximum entropy modeling

• A measure of uncertainty of random events
– 𝐻 𝑋 = 𝐸 𝐼 𝑋 = −∑+∈@ 𝑃 𝑥 log 𝑃(𝑥)
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Maximized when P(X) is 
a uniform distribution

Question 1 is answered, then 
how about question 2?



Recap: represent the constraints

• Empirical expectation of feature function over 
a corpus
– 𝐸[ G𝑝 𝑓 ] = ∑+," G𝑝 𝑥, 𝑦 𝑓(𝑥, 𝑦)

• Expectation of feature function under a given 
statistical model
– 𝐸[𝑝 𝑓 ] = ∑+," G𝑝 𝑥 𝑝(𝑦|𝑥)𝑓(𝑥, 𝑦)
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where  <𝑝 𝑥, 𝑦 = h(i(j,k))
l

i.e., frequency of observing 
𝑓(𝑥, 𝑦) in a given collection. 

Empirical distribution of 𝑥
in the same collection. 

Model’s estimation of 
conditional distribution. 



Recap: maximum entropy principle

• Let’s solve this constrained optimization 
problem with Lagrange multipliers

47

𝑝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥'∈)𝐻(𝑝)
Primal:

Lagrangian:

𝐿 𝑝, 𝜆 = 𝐻 𝑝 +V
#

𝜆#(𝑝 𝑓# − G𝑝 𝑓# )

a strategy for finding the local 
maxima and minima of a function 
subject to equality constraints



Recap: maximum entropy principle

• Let’s take a close look at the dual function
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Ψ 𝜆 = −V
+

G𝑝 𝑥 log 𝑍V 𝑥 +V
+

G𝑝 𝑥 V
#

𝜆# G𝑝 𝑓#

=V
+

G𝑝 𝑥 log
exp(∑# 𝜆# G𝑝 𝑓# )

𝑍V 𝑥

=V
+

G𝑝 𝑥 log 𝑝(𝑦|𝑥)

Maximum likelihood estimator!



Maximum entropy principle

• The maximum entropy model subject to the 
constraints 𝐶 has a parametric solution 
𝑝*
∗(𝑦|𝑥) where the parameters 𝜆∗ can be 

determined by maximizing the likelihood 
function of 𝑝*(𝑦|𝑥) over a training set

49

Logistic regression

Features follow 
Gaussian distribution

Maximum entropy 
model

With a Gaussian distribution, differential 
entropy is maximized for a given variance.



Parameter estimation

• Maximum likelihood estimation
§ 𝐿 𝑤 =
∑"∈$ 𝑦" log 𝑝(𝑦" = 1|𝑋") + (1 − 𝑦") log 𝑝(𝑦" = 0|𝑋")

§ Take gradient of 𝐿 𝑤 with respect to 𝑤

50

𝜕𝐿 𝑤
𝜕𝑤 = r

1∈3

𝑦1
𝜕 log 𝑝(𝑦1 = 1|𝑋1)

𝜕𝑤 + (1 − 𝑦1)
𝜕 log 𝑝(𝑦1 = 0|𝑋1)

𝜕𝑤



Parameter estimation

• Maximum likelihood estimation

§
Z [\] W("!$%|@!)

Z?
= − Z [\] %:;<=(>?$@!)

Z?

§
Z [\] W("!$^|@!)

Z?
= 0 − 𝑝(𝑦' = 1|𝑋') 𝑋'
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=
exp(−𝑤.𝑋')

1 + exp(−𝑤.𝑋')
𝑋'

= 1 − 𝑝(𝑦' = 1|𝑋') 𝑋'



Parameter estimation

• Maximum likelihood estimation
§ 𝐿 𝑤 =
∑"∈$ 𝑦" log 𝑝(𝑦" = 1|𝑋") + (1 − 𝑦") log 𝑝(𝑦" = 0|𝑋")

§ Take gradient of 𝐿 𝑤 with respect to 𝑤
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𝜕𝐿 𝑤
𝜕𝑤 = r

1∈3

𝑦1
𝜕 log 𝑝(𝑦1 = 1|𝑋1)

𝜕𝑤 + (1 − 𝑦1)
𝜕 log 𝑝(𝑦1 = 0|𝑋1)

𝜕𝑤

= r
1∈3

𝑦1 1 − 𝑝 𝑦1 = 1 𝑋1 𝑋1 + 1 − 𝑦1 0 − 𝑝 𝑦1 = 1 𝑋1 𝑋1

= r
1∈3

𝑦1 − 𝑝 𝑦 = 1 𝑋1 𝑋1
Good news: neat format, 
concave function for 𝒘

Bad news: no close form solution
Can be easily generalized 
to multi-class case



Gradient-based optimization

• Gradient descent

– 𝛻𝐿 𝑤 = [Z_ ?
Z?*

, Z_ ?
Z?'

, … , Z_ ?
Z?+

]

– 𝑤(`:%) = 𝑤(`) − 𝜂(`)𝛻𝐿 𝑤
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Step-size, affects 
convergence

Iterative updating



Parameter estimation

• Stochastic gradient descent
while not converge

randomly choose 𝑑 ∈ 𝐷

54

Gradually shrink the step-size 

𝑤(tu6) = 𝑤(t) − 𝜂 t 𝛻𝐿7 𝑤

𝛻𝐿7 𝑤 = [
𝜕𝐿7 𝑤
𝜕𝑤v

,
𝜕𝐿7 𝑤
𝜕𝑤6

, … ,
𝜕𝐿7 𝑤
𝜕𝑤w

]

𝜂(tu6) = 𝑎𝜂 t



Parameter estimation

• Batch gradient descent
while not converge

Compute gradient w.r.t. all training instances

Compute step size 𝜂 `
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𝑤(tu6) = 𝑤(t) − 𝜂 t 𝛻𝐿7 𝑤

𝛻𝐿x 𝑤 = [
𝜕𝐿x 𝑤
𝜕𝑤v

,
𝜕𝐿x 𝑤
𝜕𝑤6

, … ,
𝜕𝐿x 𝑤
𝜕𝑤w

]

Line search is required to 
ensure sufficient decent

First order method Second order methods, e.g., quasi-
Newton method and conjugate 
gradient, provide faster convergence



Model regularization

• Avoid over-fitting
– We may not have enough samples to well 

estimate model parameters for logistic regression
– Regularization
• Impose additional constraints over the model 

parameters
• E.g., sparsity constraint – enforce the model to have 

more zero parameters 
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Model regularization

• L2 regularized logistic regression
– Assume the model parameter 𝑤 is drawn from 

Gaussian: w ∼ 𝑁(0, 𝜎a)
– 𝑝 𝑦' , 𝑤 𝑋' ∝ 𝑝 𝑦' 𝑋' , 𝑤 𝑝(𝑤)
– 𝐿 𝑤 = ∑'∈b[𝑦' log 𝑝(𝑦' = 1|𝑋')
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+(1 − 𝑦') log 𝑝 𝑦' = 0 𝑋' ] −
𝑤.𝑤
2𝜎a

L2-norm of 𝑤



Generative V.S. Discriminative models

Generative
• Specifying joint distribution

– Full probabilistic specification 
for all the random variables

• Dependence assumption 
has to be specified for 
𝑝 𝑋 𝑦 and 𝑝(𝑦)

• Flexible, can be used in 
unsupervised learning

Discriminative 
• Specifying conditional 

distribution
– Only explain the target 

variable

• Arbitrary features can be 
incorporated for modeling 
𝑝 𝑦 𝑋

• Need labeled data, only 
suitable for (semi-) 
supervised learning
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Naïve Bayes V.S. Logistic regression

Naive Bayes
• Conditional independence

– 𝑝 𝑋 𝑦 = ∏0 𝑝(𝑥0|𝑦)
• Distribution assumption of 
𝑝(𝑥!|𝑦)

• # parameters
– 𝑘(𝑉 + 1)

• Model estimation
– Closed form MLE

• Asymptotic convergence rate

– 𝜖12,4 ≤ 𝜖12,5 + 𝑂(
678 9
4
)

Logistic Regression
• No independence assumption
• Functional form assumption 

of 𝑝 𝑦 𝑋 ∝ exp(𝑤k8𝑋)
• # parameters

– (𝑘 − 1)(𝑉 + 1)
• Model estimation

– Gradient-based MLE
• Asymptotic convergence rate

– 𝜖/0,2 ≤ 𝜖/0,3 + 𝑂(
+
2
)
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Need more training data



Naïve Bayes V.S. Logistic regression
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"On discriminative vs. generative classifiers: A comparison of logistic 
regression and naive bayes.“ – Ng, Jordan NIPS 2002, UCI Data set

LR
NB


