Regression models

School of Electrical and Computer Engineering
University of Tehran
Erfan Darzi

erfandarzi@ut.ac.ir

Recap: Naïve Bayes classifier

•
$$f(X) = argmax_y P(y|X)$$

 $= argmax_y P(X|y)P(y)$
 $= argmax_y \prod_{i=1}^V P(x_i|y) P(y)$
Class conditional density Class prior
#parameters: $|Y| \times V$ $|Y| - 1$
v.s. $|Y| \times (2^V - 1)$ Computationally feasible

Today's lecture

- Logistic regression model
 - A discriminative classification model
 - Two different perspectives to derive the model
 - Parameter estimation

Review: Bayes risk minimization

Risk – assign instance to a wrong class

Instance-based solution

- k nearest neighbors
 - Approximate Bayes decision rule in a subset of data around the testing point

Instance-based solution

- k nearest neighbors
 - Approximate Bayes decision rule in a subset of data around the testing point
 - Let V be the volume of the m dimensional ball around x containing the k nearest neighbors for x, we have

$$p(x)V = \frac{k}{N} \implies p(x) = \frac{k}{NV} \qquad p(x|y=1) = \frac{k_1}{N_1V} \qquad p(y=1) = \frac{N_1}{N}$$

$$Total \ number \ of \ instances$$

$$With \ Bayes \ rule: \qquad \frac{N_1}{N} \times \frac{k_1}{N_1V} = \frac{k_1}{k}$$

$$p(y=1|x) = \frac{\frac{N_1}{N} \times \frac{k_1}{N_1V}}{\frac{k}{NV}} = \frac{k_1}{k}$$

$$Counting \ the \ nearest$$

With Bayes rule:
$$p(y=1|x) = \frac{\frac{N_1}{N} \times \frac{k_1}{N_1 V}}{\frac{k}{N V}} = \frac{k_1}{k}$$

Counting the nearest neighbors from class1

Generative solution

Naïve Bayes classifier

$$-y^* = argmax_y P(y|X)$$

$$= argmax_y P(X|y)P(y)$$
By Bayes rule
$$= argmax_y \prod_{i=1}^{|d|} P(x_i|y) P(y)$$

i=1

By independence assumption

Estimating parameters

Maximial likelihood estimator

$$-P(x_i|y) = \frac{\sum_d \sum_j \delta(x_d^j = x_i, y_d = y)}{\sum_d \delta(y_d = y)}$$
$$-P(y) = \frac{\sum_d \delta(y_d = y)}{\sum_d 1}$$

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious	Y
D1	1	1	1	1	0	1	1	1	0	0	0	1
D2	1	1	0	0	1	1	1	0	1	0	0	1
D3	0	0	0	0	0	1	0	0	0	1	1	0

Discriminative v.s. generative models

All instances are considered for probability density estimation

Generative model

Discriminative model

More attention will be put onto the <u>boundary points</u>

Parametric form of decision boundary in Naïve Bayes

For binary cases

$$-f(X) = sgn(\log P(y = 1|X) - \log P(y = 0|X))$$

$$= sgn\left(\log \frac{P(y = 1)}{P(y = 0)} + \sum_{i=1}^{|d|} c(x_i, d) \log \frac{P(x_i|y = 1)}{P(x_i|y = 0)}\right)$$

$$= sgn(w^T \overline{X})$$
where

Linear regression?

$$w = \left(\log \frac{P(y=1)}{P(y=0)}, \log \frac{P(x_1|y=1)}{P(x_1|y=0)}, \dots, \log \frac{P(x_v|y=1)}{P(x_v|y=0)}\right)$$

$$\bar{X} = (1, c(x_1, d), \dots, c(x_v, d))$$

Regression for classification?

Linear regression

$$-y \leftarrow w^T X$$

Relationship between a <u>scalar</u> dependent variable
 y and one or more explanatory variables

Regression for classification?

- Linear regression
 - $-y \leftarrow w^T X$

Y is discrete in a classification problem!

Relationship between a <u>scalar</u> dependent variable
 y and one or more explanatory variables

Regression for classification?

Logistic regression

$$-p(y|x) = \sigma(w^T X) = \frac{1}{1 + \exp(-w^T X)}$$

Sigmoid function

Directly modeling of class posterior

Why sigmoid function?

$$-P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1)+P(X|y = 0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}$$
Binomial
$$P(y = 1) = \alpha$$

$$0.75$$

$$P(X|y = 0) = N(\mu_0, \delta^2)$$

$$0.50$$

$$P(X|y = 0) = N(\mu_0, \delta^2)$$

$$0.25$$
Normal with identical variance

Why sigmoid function?

$$-P(y=1|X) = \frac{P(X|y=1)P(y=1)}{P(X|y=1)P(y=1)+P(X|y=0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(X|y=0)P(y=0)}{P(X|y=1)P(y=1)}}$$

$$= \frac{1}{1 + \exp\left(-\ln\frac{P(X|y=1)P(y=1)}{P(X|y=0)P(y=0)}\right)}$$

Why sigmoid function?

$$P(x|y) = \frac{1}{\delta\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\delta^2}}$$

$$\ln \frac{P(X|y=1)P(y=1)}{P(X|y=0)P(y=0)} = \ln \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{V} \ln \frac{P(x_i|y=1)}{P(x_i|y=0)}$$

$$= \ln \frac{\alpha}{1-\alpha} + \sum_{i=1}^{V} \left(\frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i - \frac{\mu_{1i}^2 - \mu_{0i}^2}{2\delta_i^2}\right)$$

$$= w_0 + \sum_{i=1}^{V} \frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i$$
Origin of the name:
$$= w_0 + w^T X$$

$$= \overline{w}^T \overline{X}$$

Why sigmoid function?

$$-P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1)+P(X|y = 0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}$$

$$= \frac{1}{1 + \exp\left(-\ln\frac{P(X|y = 1)P(y = 1)}{P(X|y = 0)P(y = 0)}\right)}$$

$$= \frac{1}{1 + \exp(-\overline{w}^T \overline{X})}$$

Generalized Linear Model

Note: it is still a linear relation among the features!

For multi-class categorization

$$-P(y=k|X) = \frac{\exp(w_k^T X)}{\sum_{j=1}^K \exp(w_j^T X)}$$

$$-P(y=k|X) \propto \exp(w_k^T X)$$

Warning: redundancy in model parameters,

When K=2,

$$P(y = 1|X) = \frac{\exp(w_1^T X)}{\exp(w_1^T X) + \exp(w_0^T X)}$$
$$= \frac{1}{1 + \exp(-(w_1 - w_0)^T X)}$$

Decision boundary for binary case

$$-\hat{y} = \begin{cases} 1, p(y=1|X) > 0.5\\ 0, & otherwise \end{cases}$$

$$p(y=1|X) = \frac{1}{1 + \exp(-w^T X)} > 0.5$$
i.f.f.
$$\exp(-w^T X) < 1$$
i.f.f.
$$w^T X > 0$$

$$-\hat{y} = \begin{cases} 1, & w^T x > 0\\ 0, & otherwise \end{cases}$$

Decision boundary in general

$$-\hat{y} = argmax_{y}p(y|X)$$

$$= argmax_{y} \exp(w_{y}^{T}X)$$

$$= argmax_{y}w_{y}^{T}X$$
A linear model!

Summary

$$-P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1)+P(X|y = 0)P(y=0)}$$

$$= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}$$
Binomial
$$P(y = 1) = \alpha$$

$$0.75$$

$$P(X|y = 0) = N(\mu_0, \delta^2)$$

$$0.50$$

$$P(X|y = 0) = N(\mu_0, \delta^2)$$

$$0.50$$
Normal with identical variance

Decision boundary for binary case

$$-\hat{y} = \begin{cases} 1, p(y=1|X) > 0.5\\ 0, & otherwise \end{cases}$$

$$p(y=1|X) = \frac{1}{1 + \exp(-w^T X)} > 0.5$$
i.f.f.
$$\exp(-w^T X) < 1$$
i.f.f.
$$w^T X > 0$$

$$-\hat{y} = \begin{cases} 1, & w^T x > 0\\ 0, & otherwise \end{cases}$$
A linear model!

• Why sigmoid function?

$$P(x|y) = \frac{1}{\delta\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\delta^2}}$$

$$\ln \frac{P(X|y=1)P(y=1)}{P(X|y=0)P(y=0)} = \ln \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{V} \ln \frac{P(x_i|y=1)}{P(x_i|y=0)}$$

$$= \ln \frac{\alpha}{1-\alpha} + \sum_{i=1}^{V} \left(\frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i - \frac{\mu_{1i}^2 - \mu_{0i}^2}{2\delta_i^2}\right)$$

$$= w_0 + \sum_{i=1}^{V} \frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i$$
Origin of the name:
$$= w_0 + w^T X$$

$$= \overline{w}^T \overline{X}$$

Recap: parametric form of decision boundary in Naïve Bayes

For binary cases

$$-f(X) = sgn(\log P(y = 1|X) - \log P(y = 0|X))$$

$$= sgn\left(\log \frac{P(y = 1)}{P(y = 0)} + \sum_{i=1}^{|d|} c(x_i, d) \log \frac{P(x_i|y = 1)}{P(x_i|y = 0)}\right)$$

$$= sgn(w^T \bar{X})$$
where

Linear regression?

$$w = \left(\log \frac{P(y=1)}{P(y=0)}, \log \frac{P(x_1|y=1)}{P(x_1|y=0)}, \dots, \log \frac{P(x_v|y=1)}{P(x_v|y=0)}\right)$$

$$\bar{X} = (1, c(x_1, d), \dots, c(x_v, d))$$

Imagine we have the following

Documents

Sentiment

"happy", "good", "purchase", "item", "indeed"

positive

$$p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1$$

Question: find a distribution p(x, y) that satisfies this observation.

Answer1: p(x = "item", y = 1) = 1, and all the others 0

Answer2: p(x = "indeed", y = 1) = 0.5, p(x = "good", y = 1) = 0.5, and all the others 0

We have too little information to favor either one of them.

Occam's razor

- A problem-solving principle
 - "among competing hypotheses that predict equally well, the one with the fewest assumptions should be selected."
 - William of Ockham (1287–1347)
 - Principle of Insufficient Reason: "when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely"
 - Pierre-Simon Laplace (1749–1827)

Imagine we have the following

Documents

"happy", "good", "purchase", "item", "indeed"

Sentiment

positive

$$p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1$$

Question: find a distribution p(x, y) that satisfies this observation.

As a result, a *safer* choice would be:

$$p(x = "\cdot ", y = 1) = 0.2$$

Equally favor every possibility

Imagine we have the following

Observations Sentiment

"happy", "good", "purchase", "item", "indeed" positive

30% of time "good", "item" positive

$$p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1$$
 $p(x = \text{"good"}, y = 1) + p(x = \text{"item"}, y = 1) = 0.3$

Question: find a distribution p(x, y) that satisfies this observation.

Again, a *safer* choice would be:

$$p(x = "good", y = 1) = p(x = "item", y = 1) = 0.15$$
, and all the others $\frac{7}{30}$

Imagine we have the following

```
Observations Sentiment "happy", "good", "purchase", "item", "indeed" positive 30\% of time "good", "item" positive 50\% of time "good", "happy" positive p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1 p(x = \text{"good"}, y = 1) + p(x = \text{"item"}, y = 1) = 0.3 p(x = \text{"good"}, y = 1) + p(x = \text{"happy"}, y = 1) = 0.5
```

Question: find a distribution p(x, y) that satisfies this observation. Time to think about:

- 1) what do we mean by equally/uniformly favoring the models?
- 2) given all these constraints, how could we find the most preferred model?

Maximum entropy modeling

A measure of uncertainty of random events

$$-H(X) = E[I(X)] = -\sum_{x \in X} P(x) \log P(x)$$

Maximized when P(X) is a uniform distribution

Question 1 is answered, then how about question 2?

- Indicator function
 - E.g., to express the observation that word 'good' occurs in a positive document

•
$$f(x,y) = \begin{cases} 1 & \text{if } y = 1 \text{ and } x = \text{`good'} \\ 0 & \text{otherwise} \end{cases}$$

Usually referred as feature function

 Empirical expectation of feature function over a corpus

$$-E[\tilde{p}(f)] = \sum_{x,y} \tilde{p}(x,y) f(x,y)$$
 where $\tilde{p}(x,y) = \frac{c(f(x,y))}{N}$ i.e., frequency of observing $f(x,y)$ in a given collection.

 Expectation of feature function under a given statistical model

$$-E[p(f)] = \sum_{x,y} \tilde{p}(x) p(y|x) f(x,y)$$

Empirical distribution of xin the same collection.

Model's estimation of conditional distribution.

 When a feature is important, we require our preferred statistical model to accord with it

$$-C := \{ p \in P | E[p(f_i)] = E[\tilde{p}(f_i)], \forall i \in \{1, 2, ..., n\} \}$$

$$-E[p(f_i)] = E[\tilde{p}(f_i)]$$

$$\sum_{x,y} \tilde{p}(x,y) f_i(x,y) = \sum_{x,y} \tilde{p}(x) p(y|x) f_i(x,y)$$

We only need to specify this in our preferred model!

Is Question 2 answered?

Let's visualize this

Maximum entropy principle

• To select a model from a set C of allowed probability distributions, choose the model $p^* \in C$ with maximum entropy H(p)

$$p^* = argmax_{p \in C}H(p)$$

p(y|x)

Both questions are answered!

Maximum entropy principle

 Let's solve this constrained optimization problem with Lagrange multipliers

Primal:

$$p^* = argmax_{p \in C}H(p)$$

Lagrangian:

a strategy for finding the local maxima and minima of a function subject to equality constraints

$$L(p,\lambda) = H(p) + \sum_{i} \lambda_{i}(p(f_{i}) - \tilde{p}(f_{i}))$$

 Let's solve this constrained optimization problem with Lagrange multipliers

Lagrangian:

$$L(p,\lambda) = H(p) + \sum_{i} \lambda_{i}(p(f_{i}) - \tilde{p}(f_{i}))$$

Dual:

al:
$$p_{\lambda}(y|x) = \frac{1}{Z_{\lambda}(x)} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

$$\Psi(\lambda) = -\sum_{x} \tilde{p}(x) \log Z_{\lambda}(x) + \sum_{i} \lambda_{i} \, \tilde{p}(f_{i})$$

 Let's solve this constrained optimization problem with Lagrange multipliers

Dual:

$$\Psi(\lambda) = -\sum_{x} \tilde{p}(x) \log Z_{\lambda}(x) + \sum_{i} \lambda_{i} \, \tilde{p}(f_{i})$$
where
$$Z_{\lambda} = \sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

Let's take a close look at the dual function

$$\Psi(\lambda) = -\sum_{x} \tilde{p}(x) \log Z_{\lambda}(x) + \sum_{i} \lambda_{i} \, \tilde{p}(f_{i})$$
where
$$Z_{\lambda} = \sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

Let's take a close look at the dual function

$$\Psi(\lambda) = -\sum_{x} \tilde{p}(x) \log Z_{\lambda}(x) + \sum_{x} \tilde{p}(x) \sum_{i} \lambda_{i} \tilde{p}(f_{i})$$

$$= \sum_{x} \tilde{p}(x) \log \frac{\exp(\sum_{i} \lambda_{i} \tilde{p}(f_{i}))}{Z_{\lambda}(x)}$$

$$= \sum_{x} \tilde{p}(x) \log p(y|x)$$

Maximum likelihood estimator!

Primal: maximum entropy

$$-p^* = argmax_{p \in C}H(p)$$

Dual: logistic regression

$$-p_{\lambda}(y|x) = \frac{1}{Z_{\lambda}(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$

where
$$Z_{\lambda} = \sum_{y}^{\lambda} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

 λ^* is determined by $\Psi(\lambda)$

Questions haven't been answered

- Class conditional density
 - Why it should be Gaussian with equal variance?
- Model parameters
 - What is the relationship between w and λ ?
 - How to estimate them?

Recap: Occam's razor

- A problem-solving principle
 - "among competing hypotheses that predict equally well, the one with the fewest assumptions should be selected."
 - William of Ockham (1287–1347)
 - Principle of Insufficient Reason: "when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely"
 - Pierre-Simon Laplace (1749–1827)

Recap: a different perspective

Imagine we have the following

```
Observations Sentiment "happy", "good", "purchase", "item", "indeed" positive 30\% of time "good", "item" positive 50\% of time "good", "happy" positive p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1 p(x = \text{"good"}, y = 1) + p(x = \text{"item"}, y = 1) = 0.3 p(x = \text{"good"}, y = 1) + p(x = \text{"happy"}, y = 1) = 0.5
```

Question: find a distribution p(x, y) that satisfies this observation. Time to think about:

- 1) what do we mean by equally/uniformly favoring the models?
- 2) given all these constraints, how could we find the most preferred model?

Recap: maximum entropy modeling

A measure of uncertainty of random events

$$-H(X) = E[I(X)] = -\sum_{x \in X} P(x) \log P(x)$$

Maximized when P(X) is a uniform distribution

Question 1 is answered, then how about question 2?

Recap: represent the constraints

 Empirical expectation of feature function over a corpus

$$-E[\tilde{p}(f)] = \sum_{x,y} \tilde{p}(x,y) f(x,y)$$
 where $\tilde{p}(x,y) = \frac{c(f(x,y))}{N}$ i.e., frequency of observing $f(x,y)$ in a given collection.

Expectation of feature function under a given statistical model

$$-E[p(f)] = \sum_{x,y} \tilde{p}(x) p(y|x) f(x,y)$$

Empirical distribution of x in the same collection.

Model's estimation of conditional distribution.

Recap: maximum entropy principle

 Let's solve this constrained optimization problem with Lagrange multipliers

Primal:

$$p^* = argmax_{p \in C}H(p)$$

Lagrangian:

a strategy for finding the local maxima and minima of a function subject to equality constraints

$$L(p,\lambda) = H(p) + \sum_{i} \lambda_{i}(p(f_{i}) - \tilde{p}(f_{i}))$$

Recap: maximum entropy principle

Let's take a close look at the dual function

$$\Psi(\lambda) = -\sum_{x} \tilde{p}(x) \log Z_{\lambda}(x) + \sum_{x} \tilde{p}(x) \sum_{i} \lambda_{i} \tilde{p}(f_{i})$$

$$= \sum_{x} \tilde{p}(x) \log \frac{\exp(\sum_{i} \lambda_{i} \tilde{p}(f_{i}))}{Z_{\lambda}(x)}$$

$$= \sum_{x} \tilde{p}(x) \log p(y|x)$$

Maximum likelihood estimator!

• The maximum entropy model subject to the constraints \mathcal{C} has a parametric solution $p_{\lambda}^*(y|x)$ where the parameters λ^* can be determined by maximizing the likelihood function of $p_{\lambda}(y|x)$ over a training set

With a Gaussian distribution, differential entropy is maximized for a given variance.

Features follow Gaussian distribution

Maximum entropy

Logistic regression

- Maximum likelihood estimation
 - $L(w) = \sum_{d \in D} y_d \log p(y_d = 1|X_d) + (1 y_d) \log p(y_d = 0|X_d)$
 - Take gradient of L(w) with respect to w

$$\frac{\partial L(w)}{\partial w} = \sum_{d \in D} y_d \frac{\partial \log p(y_d = 1|X_d)}{\partial w} + (1 - y_d) \frac{\partial \log p(y_d = 0|X_d)}{\partial w}$$

Maximum likelihood estimation

$$\frac{\partial \log p(y_d=1|X_d)}{\partial w} = -\frac{\partial \log(1+\exp(-w^T X_d))}{\partial w}$$

$$= \frac{\exp(-w^T X_d)}{1+\exp(-w^T X_d)} X_d$$

$$= (1-p(y_d=1|X_d)) X_d$$

$$\frac{\partial \log p(y_d=0|X_d)}{\partial w} = (0-p(y_d=1|X_d)) X_d$$

- Maximum likelihood estimation
 - $L(w) = \sum_{d \in D} y_d \log p(y_d = 1|X_d) + (1 y_d) \log p(y_d = 0|X_d)$
 - Take gradient of L(w) with respect to w

$$\begin{split} \frac{\partial L(w)}{\partial w} &= \sum_{d \in D} y_d \frac{\partial \log p(y_d = 1|X_d)}{\partial w} + (1 - y_d) \frac{\partial \log p(y_d = 0|X_d)}{\partial w} \\ &= \sum_{d \in D} y_d \big(1 - p(y_d = 1|X_d)\big) X_d + (1 - y_d) \big(0 - p(y_d = 1|X_d)\big) X_d \\ &= \sum_{d \in D} \underbrace{\big(y_d - p(y = 1|X_d)\big) X_d}_{\text{def}} + \underbrace{\frac{\text{Good news: neat format, concave function for } w}_{\text{Bad news: no close form solution}} \end{split}$$

Can be easily generalized to multi-class case

Gradient-based optimization

Gradient descent

Stochastic gradient descent

while not converge

randomly choose $d \in D$

$$\nabla L_d(w) = \left[\frac{\partial L_d(w)}{\partial w_0}, \frac{\partial L_d(w)}{\partial w_1}, \dots, \frac{\partial L_d(w)}{\partial w_V}\right]$$

$$w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L_d(w)$$

$$\eta^{(t+1)} = a\eta^{(t)}$$

Gradually shrink the step-size

Batch gradient descent

while not converge

Compute gradient w.r.t. all training instances

$$\nabla L_D(w) = \left[\frac{\partial L_D(w)}{\partial w_0}, \frac{\partial L_D(w)}{\partial w_1}, \dots, \frac{\partial L_D(w)}{\partial w_V}\right]$$
Compute step size $\eta^{(t)}$

$$w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L_d(w)$$

Line search is required to ensure sufficient decent

First order method

Second order methods, e.g., quasi-Newton method and conjugate gradient, provide faster convergence

Model regularization

- Avoid over-fitting
 - We may not have enough samples to well estimate model parameters for logistic regression
 - Regularization
 - Impose additional constraints over the model parameters
 - E.g., sparsity constraint enforce the model to have more zero parameters

Model regularization

- L2 regularized logistic regression
 - Assume the model parameter w is drawn from Gaussian: $w \sim N(0, \sigma^2)$
 - $-p(y_d, w|X_d) \propto p(y_d|X_d, w)p(w)$

$$-L(w) = \sum_{d \in D} [y_d \log p(y_d = 1 | X_d) + (1 - y_d) \log p(y_d = 0 | X_d)] - \frac{w^T w}{2\sigma^2}$$

L2-norm of w

Generative V.S. Discriminative models

Generative

- Specifying joint distribution
 - Full probabilistic specification for all the random variables
- Dependence assumption has to be specified for p(X|y) and p(y)
- Flexible, can be used in unsupervised learning

Discriminative

- Specifying conditional distribution
 - Only explain the target variable
- Arbitrary features can be incorporated for modeling p(y|X)
- Need labeled data, only suitable for (semi-) supervised learning

Naïve Bayes V.S. Logistic regression

Naive Bayes

- Conditional independence
 - $p(X|y) = \prod_i p(x_i|y)$
- Distribution assumption of $p(x_i|y)$
- # parameters

$$- k(V + 1)$$

- Model estimation
 - Closed form MLE
- Asymptotic convergence rate

$$- \epsilon_{NB,n} \le \epsilon_{NB,\infty} + O(\sqrt{\frac{\log V}{n}})$$

Logistic Regression

- No independence assumption
- Functional form assumption of $p(y|X) \propto \exp(w_v^T X)$
- # parameters

$$-(k-1)(V+1)$$

- Model estimation
 - Gradient-based MLE
- Asymptotic convergence rate

$$-\epsilon_{LR,n} \le \epsilon_{LR,\infty} + O(\sqrt{\frac{v}{n}})$$

Need more training data

Naïve Bayes V.S. Logistic regression

"On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes." – Ng, Jordan NIPS 2002, UCI Data set