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Recap: Naive Bayes classifier

+ f(X) = argmax, P(y|X)
= argmax, P(X|y)P(y)

V
= argmax, | | Puly) PO
=1

[\

Class conditional density Class prior
#tparameters: Y |xV Y| -1

s, '\

IY[x(2V = 1) Computationally feasible




Today’s lecture

* Logistic regression model
— A discriminative classification model
— Two different perspectives to derive the model
— Parameter estimation




Review: Bayes risk minimization

* Risk —assign instance to a wrong class

—y" = argmaxyP(y|X

t p(X,y)
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) *Optimal Bayes decision boundary

/ We have learned multiple

y=1 ways to estimate this

p(X|ly = 0)p(y = 0)

B
»

pX|ly =Dply =1)

/

False negative

False positive




Instance-based solution

* k nearest neighbors

— Approximate Bayes decision rule in a subset of
data around the testing point




Instance-based solution

* k nearest neighbors

— Approximate Bayes decision rule in a subset of
data around the testing point

— Let V be the volume of the m dimensional ball
around x containing the k nearest neighbors for x,

we have

k k k4 N;
POV =y = p@ =5  Pely=D=g3 po=D=7

™ Total number of instances \
With Bayes rule: Ny ki Total number of
(y = 1|x) = N NV Kk instances in class 1
p(y =1lx) = Tk \
A NV Counting the nearests.

== N neighbors from clgss?}



Generative solution

* Naive Bayes classifier
—y* = argmax,P(y|X)

= argmax, P(X|y)P(y) By Bayesrule
|

= argmax, | [PCaly) PG)
=1

By independence
assumption




Estimating parameters

Maximial likelihood estimator

%a Y 8(X =Xy ya=Y)

— P(x;ly) =
l
24 0(a=y)
24 9(ya=y)

— P —

text | information | identify | mining | mined | is | useful | to | from | apple | delicious | Y
D1 1 1 1 1 0 1 1 1 0 0 0 1
D2 1 1 0 0 1 1 1 0 1 0 0 1
D3| O 0 0 0 0 1 0 0 0 1 1 0




Discriminative v.s. generative models

. _ Discriminative model
All instances are considered for

- : . = f(x
probability density estimation v o o o y =10
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Parametric form of decision boundary
In Naive Bayes

* For binary cases
— f(X) = sgn(log P(y = 1|X) —log P(y = 0]X))

Py=1 < P(xily = 1)
= sgn OgP(y—O) Ec(xld)logp(xlyzo)

_ T v
=sgn(w'X)| |
where Linear regression?
- (lOgP(y =1) 10gP(xlly =1) logP(xvly - 1))
Py=0)" ®Plxly=0)" ""Plxly=0)

X =01,c(x;,d), ..., c(x, d))




Regression for classification?

* Linear regression
-y« wlX
— Relationship between a scalar dependent variable
y and one or more explanatory variables
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Regression for classification?

* Linear regression Y is discrete in
T classification problem!
—yeew' X

— Relationship between a scalar dependent variable
y and one or more explanatory variables

y A
_ 1 WTX > 0.5 1.00 -~ AA A
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What if we have
an outlier? ->~0.2 regression model
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Regression for classification?

* Logistic regression ., ;..

—p(y|x) = o(WTX) = ——

1+exp(—-wTXx)
— Directly modeling of class posterior

L Plylx)
1.00 | A
0.75 1
What if we have 0.5
an outlier? 4

/é&\ 0.00 X=




Logistic regression for classification

 Why sigmoid function?

o P(Xly = 1py=1)
— P(y - 1|X) - P(X'y — 1)P(y=1)+P(X|y — 0)P(y=0)
1

~ [Py = 0)P(y = 0),

Py=1)=a 1.00

0.75
P(X|y = 0) = N(ug,6%) _ 0.50

45
@\ @;.05




Logistic regression for classification

 Why sigmoid function?

P(X|y = 1)p(y=1)

— P(y — 1|X) = P(X'y — 1)P(y=1)+P(X|y — O)P(y=0)
1

| HPCly = 0Py = 0),

1

PXly=DP(y = 1))
P(X|ly =0)P(y = 0)

1+ exp (— In

.
LFE 15
EXDEZ




Logistic regression for classification

(x- u)z
262

* Why sigmoid function? Paly) =57z

PXly = Dpo=0) _ | PO=D sV jn 2Ouly=D
P(X|y = 0)pP(y=0) P(y=0) T Pexily=0)
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Logistic regression for classification

 Why sigmoid function?

P(X|y = 1)p(y=1)
P(X|y = 1)piy=1)+P(X|y = 0)rP(y=0)
1

- P(y=1|X) =

| HPCly = 0Py = 0),

PXly =1DP(y = 1))

1+exp (‘ In 5 Xy = 0)P(y = 0)

1
14 exp(—wTX)

Generalized Linear Model

Note: it is still a linear relation among the features!
v}




Logistic regression for classification

* For multi-class categorization

exp (WZX )
%5, exp(w] X)

- P(y = k|X) =

— P(y = k|X) o exp(wi X) e

Warning: redundancy in model parameters,

When K=2,
exp(wi X)
P(y=1|X) =
=110 exp(w{ X) + exp(wg X)
_ 1
1+ exp(—(wy —wp)TX) -
N —

N
IIE-Ii'lil.'l :\’ 18
ARNGL




Logistic regression for classification

* Decision boundary for binary case

o 1,p(y =1|X) > 0.5
Y 0, otherwise

1
=1|X) = 0.5
. Pl 1) 1+ exp(—w'X) g
i.f.f.
exp(—wTX) <1
i.f.f.
wliX >0

>y
2

~ )1, wlx > 0 «——— Alinear model!
0, otherwise

N
LFE 19
EXDEZ 3



Logistic regression for classification

* Decision boundary in general
— ¥ = argmax,p(y|X)
= argmax,, exp(wy, X)

T P / ,,“
09
\ X\
A linear model!

= argmax,wy X




Logistic regression for classification

* Summary
o P(X|y = Dpey=1)
— P(y - 1|X) - P(X'y — 1)P(y=1)+P(X|y — 0)P(y=0)
1

PRIy =0)P(y = 0);
P(X|ly =1P(y =1),

Binomial \ 4

Py=1=a«a 1.00

0.75

P(X|y = 0) = N(ug,6%) _ 0.50
=
m\ 0.00




Recap: Logistic regression for
classification

* Decision boundary for binary case

" {1,p(y =1|X) > 0.5

Y= 0, otherwise
1
=1(X) = .
. p(y 1) 1+ exp(—w'X) >0
i.f.f.
exp(—wTX) <1
i.f.f.

wliX >0

OMN

: \ A
(N =)L)
Y

~ )1, wlx > 0 «——— Alinear model!
0, otherwise

ot 9) SEDY)
EXDEZ



Recap: Logistic regression for

classification
* Why sigmoid function? PUly) = 5=
_ Py = DPe=1) _ | POy=1) | P@ily=1)
I Xy = 0p0=0) — M im0y T 2i=1 M om0
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Recap: parametric form of decision
boundary in Naive Bayes

* For binary cases
— f(X) = sgn(log P(y = 1|X) —log P(y = 0]X))

Py=1 < P(xily = 1)
= sgn OgP(y—O) Ec(xld)logp(xlyzo)

_ T v
=sgn(w'X)| |
where Linear regression?
- (lOgP(y =1) 10gP(xlly =1) logP(xvly - 1))
Py=0)" ®Plxly=0)" ""Plxly=0)

X =01,c(x;,d), ..., c(x, d))




A different perspective

* Imagine we have the following

Documents Sentiment

V{4

“happy”, “good”,

/4

‘burchase”, “item”, “indeed” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1

Question: find a distribution p(x, y) that satisfies this observation.
Answerl: p(x ="item",y = 1) =1, and all the others 0

Answer2: p(x ="indeed",y =1) = 0.5, p(x = "good",y = 1) = 0.5, and all the others 0

We have too little information to favor either one of them.




Occam's razor

* A problem-solving principle
— “among competing hypotheses that predict
equally well, the one with the fewest assumptions
should be selected.”
e William of Ockham (1287-1347)

— Principle of Insufficient Reason: "when one has no
information to distinguish between the probability
of two events, the best strategy is to consider
them equally likely”

* Pierre-Simon Laplace (1749-1827)




A different perspective

* Imagine we have the following

Documents Sentiment

V{4

“happy”, “good”, “purchase”, “item”, “indeed” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
Question: find a distribution p(x, y) that satisfies this observation.

As a result, a safer choice would be:

p(x=""y=1)=0.2

\

Equally favor every possibility




A different perspective

* Imagine we have the following

Observations Sentiment
“happy”, “good”, “purchase”, “item”, “indeed” positive
30% of time “good”, “item” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
p(x = "good",y = 1) + p(x = "item",y = 1) = 0.3

Question: find a distribution p(x, y) that satisfies this observation.
Again, a safer choice would be:
p(x = "good",y = ]_) — p(x = "item",y = ]_) = 0.15, and all the other53—70

\

Equally favor every possibility




A different perspective

* Imagine we have the following

Observations Sentiment
“happy”, “good”, “purchase”, “item”, “indeed” positive
30% of time “good”, “item” positive
50% of time “good”, “happy” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
p(x ="good",y = 1) + p(x = "item",y =1) = 0.3
p(x = "good",y = 1) + p(x = "happy",y =1) = 0.5
Question: find a distribution p(x, y) that satisfies this observation.
Time to think about:
1) what do we mean by equally/uniformly favoring the models?
2) given all these constraints, how could we find the most preferred model?




Maximum entropy modeling

A measure of uncertainty of random events
—H(X) = E[I(X)] = — Xxex P(x) log P(x)

|

Maximized when P(X) is 1
a uniform distribution

H(X)

0.5

00 o 1 Question 1 is answered, then
Pr(X=1) how about question 2?

obLiili9) STy
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Represent the constraints

* Indicator function

— E.g., to express the observation that word ‘good’
occurs in a positive document

. _ |1 ify=1andx = ‘good’
fly) = {O otherwise

— Usually referred as feature function




Represent the constraints

* Empirical expectation of feature function over
a corpus

—E[P(H)] = Ly 8, y) f(x, 1)

~ _c(fxy)) i.e., frequency of observing
where p (X Y ) o N f (x,y) in a given collection.

* Expectation of feature function under a given
statistical model

—E[p(f)] = 2xy D) p(y]2)f (x, )
P BRI PORI

Empirical distribution of x Model’s estimation of
in the same collection. conditional distribution.

M - A




Represent the constraints

* When a feature is important, we require our
preferred statistical model to accord with it

—C =1 e PIE[p(f)]l = E[p(f)], Vi €{1,2,...,n}]
—E[p(f)] = E[p(f)]

> D @ i) = ) pRGRfiEY)
XY

X,y \

™ We only need to specify this in
\‘l.} our preferred model!

Is Question 2 answered?




Represent the constraints

e Let’s visualize this

(a) No constraint

How to deal with
these situations?

/1‘5&2 (c) Feasible constraint (d) Over constrained




Maximum entropy principle

* To select a model from a set C of allowed
probability distributions, choose the model
p* € C with maximum entropy H(p)

p" = argmax,ecH(p)

(3 \

g
oA
Both questions are answered!

p(y|x)




Maximum entropy principle

* Let’s solve this constrained optimization
problem with Lagrange multipliers

Primal: .

p” = argmax,ecH(p)

a strategy for finding the local
Lagrangian: maxima and minima of a function
8 g ) / subject to equality constraints

L(p, D) = HR) + ) 4 (f) = B(f)




Maximum entropy principle

* Let’s solve this constrained optimization
problem with Lagrange multipliers

Lagrangian:

L(p,2) = H) +ZA-<p<fi> - ()

R (Z AifiCx y))

Y = ) p)10gZy(@) + ) LB(f)

Dual:
pr(Y|x) =

BN A




Maximum entropy principle

* Let’s solve this constrained optimization

problem with Lagrange multipliers
Dual:

Y() == ) p)10gZy(@) + ) LF(f)

where

=), ew (Z MifiCx y))




Maximum entropy principle

e Let’s take a close look at the dual function

P == ) FOlogZi () + ) AB(f)

where X

=), ew (Z AifiCx y))




Maximum entropy principle

e Let’s take a close look at the dual function

YD) =~ ) pllog i@+ ) 50 ) AB(D)

o epSad()y

i S
= ZP(X) logp(y|x)

\ Maximum likelihood estimator!




Maximum entropy principle

* Primal: maximum entropy
—p" = argmax,ecH(p)
* Dual: logistic regression
1

5 &P Aifi (x, )

where 7Z; = z exp (z Aiﬁ(xJY)>
y l- \

A" is determined by W (1)

—pa(ylx) =




Questions haven’t been answered

* Class conditional density

— Why it should be Gaussian with equal variance?

* Model parameters

— What is the relationship between w and A?
— How to estimate them?




Recap: Occam's razor

* A problem-solving principle
— “among competing hypotheses that predict
equally well, the one with the fewest assumptions
should be selected.”
e William of Ockham (1287-1347)

— Principle of Insufficient Reason: "when one has no
information to distinguish between the probability
of two events, the best strategy is to consider
them equally likely”

* Pierre-Simon Laplace (1749-1827)




Recap: a different perspective

* Imagine we have the following

Observations Sentiment
“happy”, “good”, “purchase”, “item”, “indeed” positive
30% of time “good”, “item” positive
50% of time “good”, “happy” positive

p(x = "happy",y = 1) + p(x = "good",y = 1) + p(x = "purchase",y = 1)
+p(x ="item",y = 1) + p(x = "indeed",y =1) =1
p(x ="good",y = 1) + p(x = "item",y =1) = 0.3
p(x = "good",y = 1) + p(x = "happy",y =1) = 0.5
Question: find a distribution p(x, y) that satisfies this observation.
Time to think about:
1) what do we mean by equally/uniformly favoring the models?
2) given all these constraints, how could we find the most preferred model?

i!/ ; j\ &‘\
/ R 35




Recap: maximum entropy modeling

A measure of uncertainty of random events
—H(X) = E[I(X)] = — Xxex P(x) log P(x)

|

Maximized when P(X) is 1
a uniform distribution

H(X)

0.5

00 o 1 Question 1 is answered, then
Pr(X=1) how about question 2?




Recap: represent the constraints

* Empirical expectation of feature function over
a corpus

—E[P(H)] = Ly 8, y) f(x, 1)

~ _c(fxy)) i.e., frequency of observing
where p (X Y ) o N f (x,y) in a given collection.

* Expectation of feature function under a given
statistical model

—E[p(f)] = 2xy D) p(y]2)f (x, )
P BRI PORI

Empirical distribution of x Model’s estimation of
in the same collection. conditional distribution.

M B A




Recap: maximum entropy principle

* Let’s solve this constrained optimization
problem with Lagrange multipliers

Primal: .

p” = argmax,ecH(p)

a strategy for finding the local
Lagrangian: maxima and minima of a function
8 g ) / subject to equality constraints

L(p, D) = HR) + ) 4 (f) = B(f)




Recap: maximum entropy principle

e Let’s take a close look at the dual function

YD) =~ ) pllog i@+ ) 50 ) AB(D)

o epSad()y

i S
= ZP(X) logp(y|x)

\ Maximum likelihood estimator!




Maximum entropy principle

The maximum entropy model subject to the
constraints C has a parametric solution

p,(y|x) where the parameters 1* can be
determined by maximizing the likelihood

function of p,(y|x) over a training set

- With a Gaussian distribution, differential
{\'@- a entropy is maximized for a given variance.

&/
‘« wi L Features follow Maximum entropy
Gaussian distribution model

& ¢

Logistic regression




Parameter estimation

 Maximum likelihood estimation
. L(w) =
2aep Yalogp(va = 1|Xg) + (1 — yq) logp(ya = 0[X4)
= Take gradient of L(w) with respect to w

oLw) _ Z dlogp(ya = 11Xa)| | 1=y, dlogp(y4 = 01Xa)
ow Y ow Y, ow

deD




Parameter estimation

e Maximum likelihood estimation

_ 9logp(yg=1|Xqg) _ 0 log(1+exp(—-wlXy))
ow ow
exp(—w'Xy)
Xq

1+ exp(—wTX,)
=1 —pWa = 11X4))X4

. 2108Pp(ya=0IXa) _ 0—p(y; = 1|1X))X,

ow




Parameter estimation

 Maximum likelihood estimation
= L(w) =
2aep Yalogp(va = 1|Xg) + (1 — yq) logp(ya = 0[X4)
= Take gradient of L(w) with respect to w

dL(w) _ z dlogp(yq = 1[Xy) £ (1=yy) dlogp(yqs = 0[Xy)
ow Yd ow Ya ow

deD

- 2 ya(1=p(ya = 11X2))Xa + (1 — ya)(0 — p(ya = 11X2))Xq

deD

concave function for w

= S“(Yd —p(y = 11X4))X4

deD T

{ Good news: neat format,

Bad news: no close form solution

Can be easily generalized
to multi-class case




Gradient-based optimization

e Gradient descent

oL(w) JL(w) oL(w) lterative updating

ow, awV] /

—w*D = w® —OFL(w)

< &y
—
04 y —d
051 |
f
0.2 SR

Step-size, affects

VLW = |

)

aWO

convergence o
042




Parameter estimation

e Stochastic gradient descent
— while not converge

randomly choose d € D

)

Vig(w) = [

) vnmn

6W0 0W1
W(t+1) — W(t) —_ n(t)VLd(W) :
TR
T](t+1) = an(t)
> "N
/ e

Gradually shrink the step-size

-0.5
-1000 -500 0 500 1000 1500 2000
0y 54




Parameter estimation

* Batch gradient descent
— while not converge

Compute gradient w.r.t. all training instances
Vip(w) = owe ' ows " owy |
Compute step size n(®

Line search is required to
w1 — (@) _ n(t) VLy(w) ensure sufficient decent

First order method 4 ¢, 4 order methods, e.g., quasi-

Newton method and conjugate
gradient, provide faster convergence




Model regularization

* Avoid over-fitting

— We may not have enough samples to well
estimate model parameters for logistic regression

— Regularization

* Impose additional constraints over the model
parameters

* E.g., sparsity constraint — enforce the model to have
more zero parameters




Model regularization

* L2 regularized logistic regression

— Assume the model parameter w is drawn from
Gaussian: w ~ N(0,0%)

—pa, wlXg) xp(yglXq, wp(w)
—L(w) = 2aep[Valogp(ya = 1|X4) T
+(1 —ygq)logp(yg = 0|X,)] -

202
yd

L2-norm of w




Generative V.S. Discriminative models

Generative

Specifying joint distribution
— Full probabilistic specification
for all the random variables
Dependence assumption
has to be specified for

p(X|y) and p(y)

Flexible, can be used in
unsupervised learning

Discriminative

Specifying conditional
distribution
— Only explain the target
variable

Arbitrary features can be
incorporated for modeling

p(y1X)

Need labeled data, only
suitable for (semi-)
supervised learning



Naive Bayes V.S. Logistic regression

Naive Bayes Logistic Regression

* Conditional independence * No independence assumption
- p(Xly) =1L p(xily) * Functional form assumption

* Distribution assumption of of p(y|X) x exp(W;X)

. Zi));irl;]rzweters " #parameters
k1) - (k-DWV+1)

e Model estimation
— Gradient-based MLE

* Asymptotic convergence rate

e Model estimation
— Closed form MLE

e Asymptotic convergence rate

V
logV — _
— ENB,n < ENB,oo + 0( o ) GLR,n S ELR’OO T 0(\/;)

. e

Need more training data
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Naive Bayes V.S. Logistic regression
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"On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes.” — Ng, Jordan NIPS 2002, UCI Data set
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