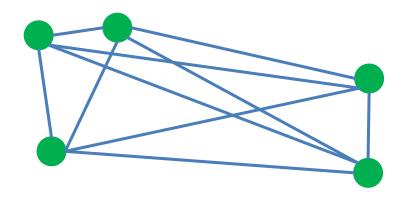
Clustering and expectation maximization

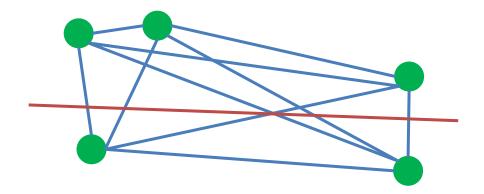
School of Electrical and Computer Engineering
University of Tehran
Erfan Darzi

erfandarzi@ut.ac.ir

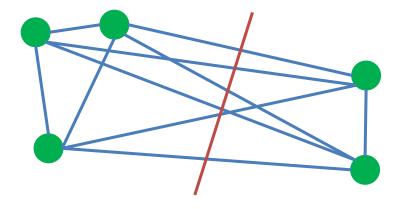
Describe the pairwise distance via a graph



- Describe the pairwise distance via a graph
 - Clustering can be obtained via graph cut

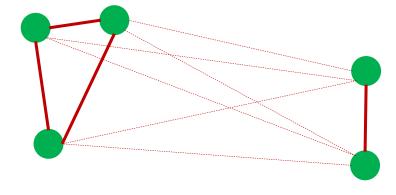


- Describe the pairwise distance via a graph
 - Clustering can be obtained via graph cut

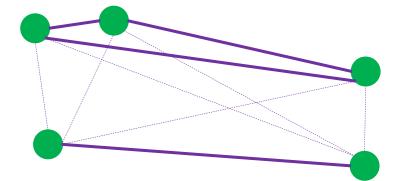


- Describe the pairwise distance via a graph
 - Clustering can be obtained via graph cut

Cut by class label



Cut by cluster label



Recap: external validation

- Given class label Ω on each instance
 - Rand index

	$w_i = w_j$	$w_i \neq w_j$
$c_i = c_j$	20	20
$c_i \neq c_j$	24	72

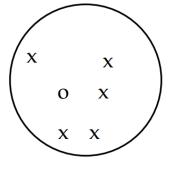
$$TP + FP = {6 \choose 2} + {6 \choose 2} + {5 \choose 2} = 40$$

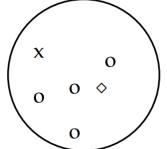
$$TP = {5 \choose 2} + {4 \choose 2} + {3 \choose 2} + {2 \choose 2} = 20$$

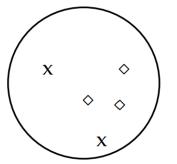
$$\text{cluster 1}$$

$$\text{cluster 2}$$

$$\text{cluster 3}$$







Today's lecture

- k-means clustering
 - A typical partitional clustering algorithm
 - Convergence property
 - Expectation Maximization algorithm
 - Gaussian mixture model

Partitional clustering algorithms

- Partition instances into exactly k nonoverlapping clusters
 - Flat structure clustering
 - Users need to specify the cluster size k

Partitional clustering algorithms

- Partition instances into exactly k nonoverlapping clusters
 Optimize this in an alternative way
 - Typical criterion Inter-cluster distance Intra-cluster distance $\max \sum_{i \neq j} d(c_i, c_j) C \sum_i \sigma_i$
 - Optimal solution: enumerate every possible partition of size k and return the one maximizes the criterion

Let's approximate this! Unfortunately, this is NP-hard!

k-means algorithm

Input: cluster size k, instances $\{x_i\}_{i=1}^N$, distance metric $d(\cdot, \cdot)$

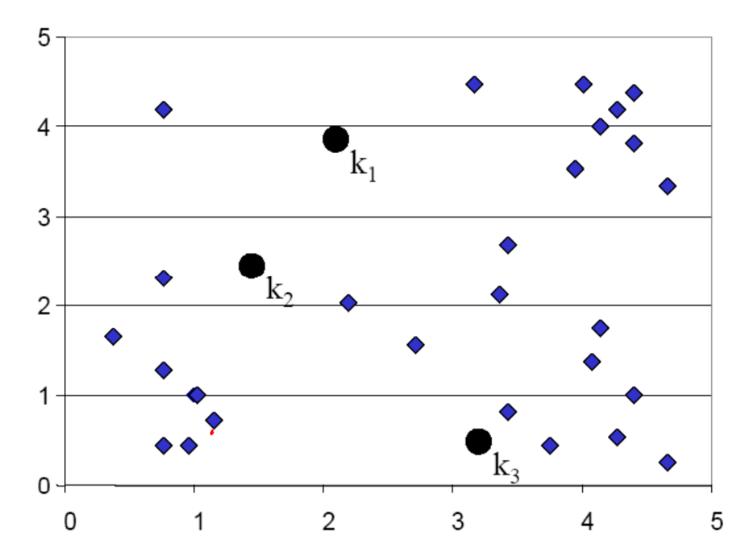
Output: cluster membership assignments $\{z_i\}_{i=1}^N$

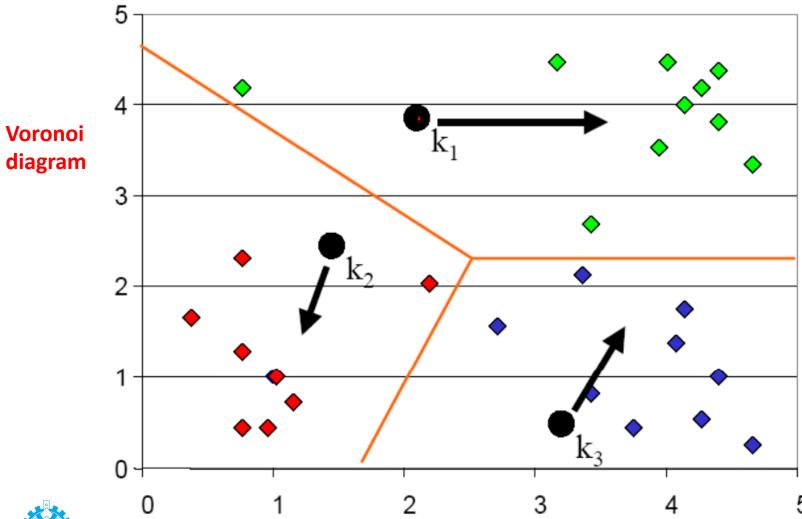
- 1. Initialize k cluster centroids $\{c_i\}_{i=1}^k$ (randomly if no domain knowledge is available)
- 2. Repeat until no instance changes its cluster membership:
 - Decide the cluster membership of instances by assigning them to the nearest cluster centroid

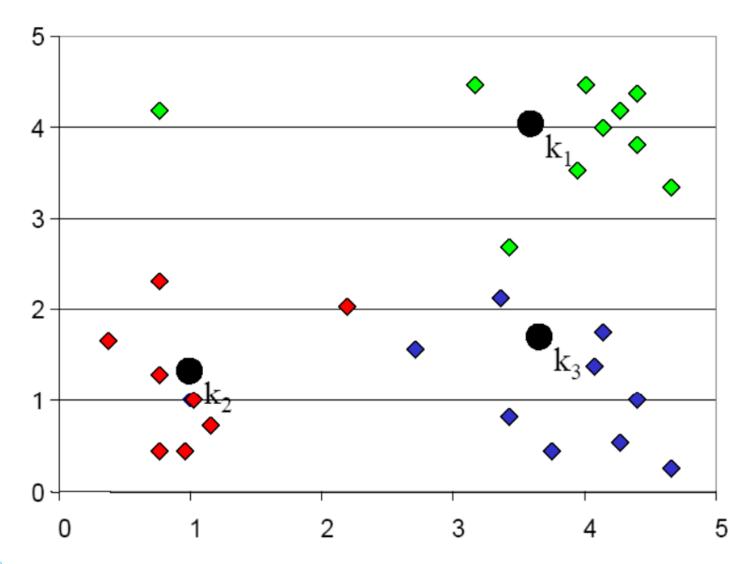
$$z_i = argmin_k d(c_k, x_i)$$
 Minimize intra distance

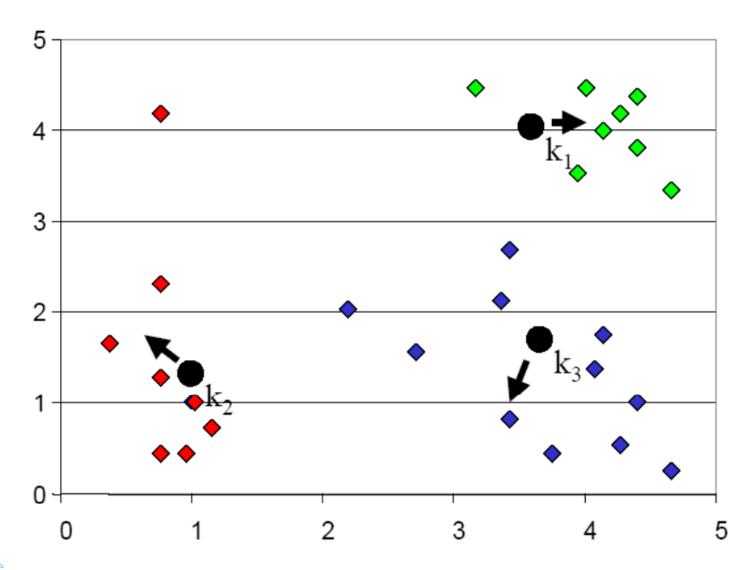
 Update the k cluster centroids based on the assigned cluster membership

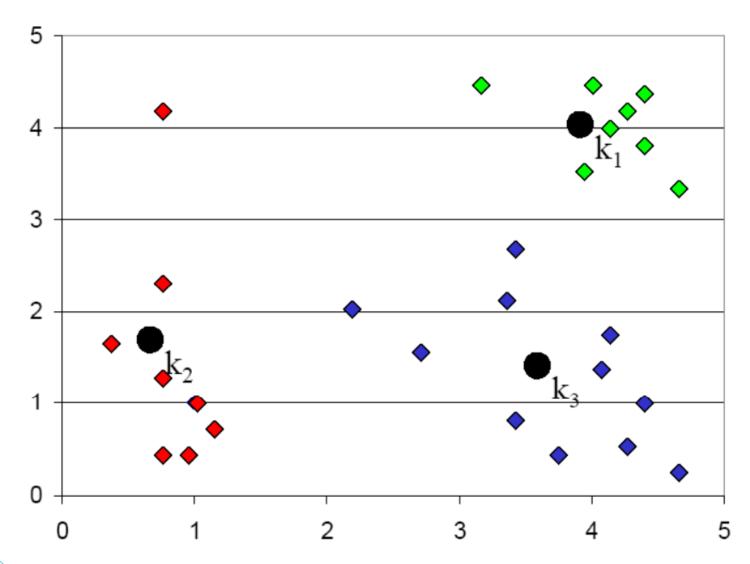
$$c_k = \frac{\sum_i \delta(z_i = c_k) x_i}{\sum_i \delta(z_i = c_k)}$$
 Maximize inter distance











Complexity analysis

- Decide cluster membership
 - -O(kn)
- Compute cluster centroid
 - -O(n)

Don't forget the complexity of distance computation, e.g., O(V) for Euclidean distance

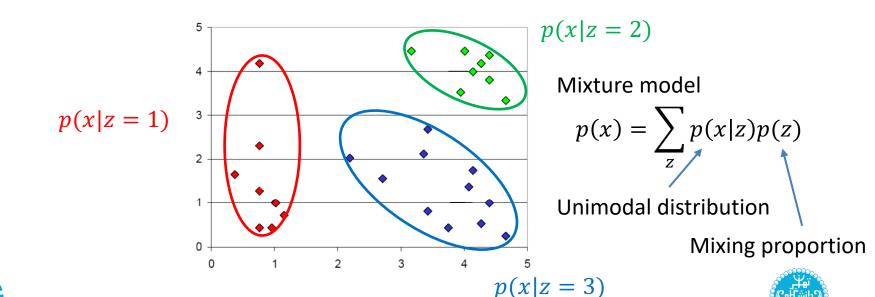
- Assume k-means stops after l iterations
 - -O(knl)

Convergence property

- Why will k-means stop?
 - Answer: it is a special version of Expectation Maximization (EM) algorithm, and EM is guaranteed to converge
 - However, it is only guaranteed to converge to local optimal, since k-means (EM) is a greedy algorithm

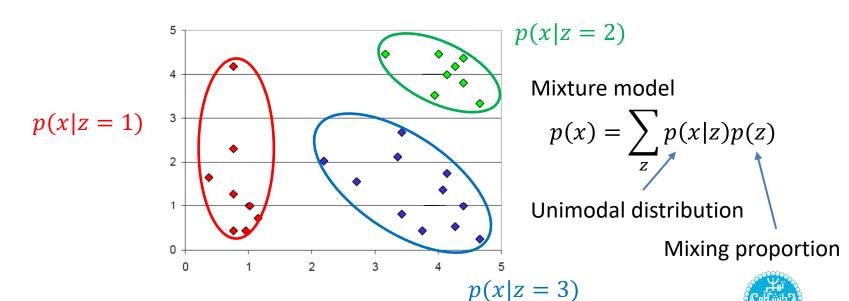
Probabilistic interpretation of clustering

- The density model of p(x) is multi-modal
- Each mode represents a sub-population
 - E.g., unimodal Gaussian for each group



Probabilistic interpretation of clustering

- If z is known for every x
 - Estimating p(z) and p(x|z) is easy
 - Maximum likelihood estimation
 - This is Naïve Bayes



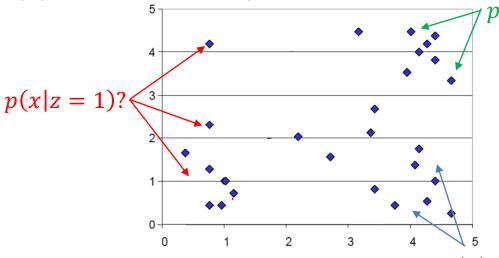
Probabilistic interpretation of clustering

• But z is unknown for all x

Usually a constrained optimization problem

- Estimating p(z) and p(x|z) is generally hard
 - $\max_{\alpha,\beta} \sum_{i} \log \sum_{z_i} p(x_i|z_i,\beta) p(z_i|\alpha)$

Appeal to the Expectation Maximization algorithm



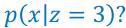
p(x|z=2)?

Mixture model

$$p(x) = \sum_{z} p(x|z)p(z)$$

Unimodal distribution

Mixing proportion



Introduction to EM

- Parameter estimation
 - All data is observable
 - Maximum likelihood estimator
 - Optimize the analytic form of $L(\theta) = \log p(X|\theta)$
 - Missing/unobservable data
 E.g. cluster membership
 - Data: X (observed) + Z (hidden)
 - Likelihood: $L(\theta) = \log \sum_{Z} p(X, Z|\theta)$
 - Approximate it!

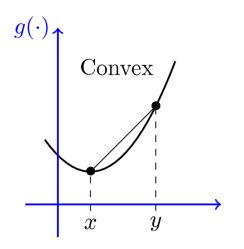
Most of cases are intractable

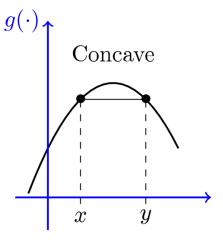
Background knowledge

Jensen's inequality

– For any convex function f(x) and positive weights

$$f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f(x_{i}) \qquad \sum_{i} \lambda_{i} = 1$$





Expectation Maximization

 Maximize data likelihood function by pushing the lower bound

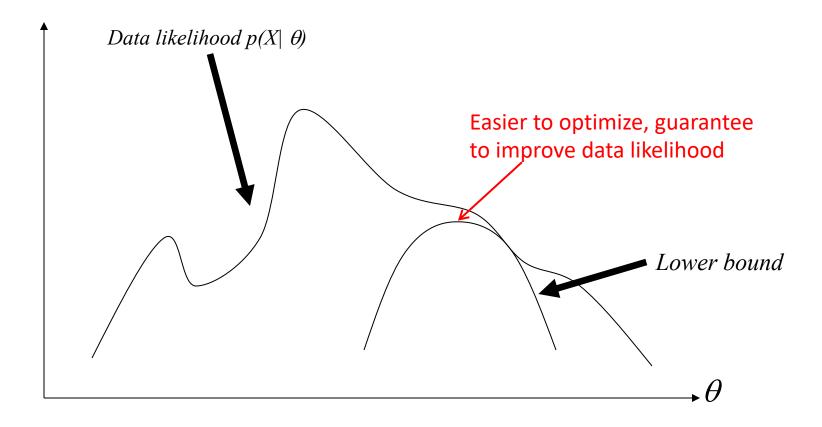
Proposal distributions for Z

$$-L(\theta) = \log \sum_{Z} p(X, Z|\theta) = \log \sum_{Z} \frac{q(Z)p(X, Z|\theta)}{|q(Z)|}$$
 Jensen's inequality
$$f(E[x]) \geq E[f(x)] \geq \sum_{Z} q(Z) \log p(X, Z|\theta) - \sum_{Z} q(Z) \log q(Z)$$

Lower bound!

Components we need to tune when optimizing $L(\theta)$: q(Z) and θ !

Intuitive understanding of EM



• Optimize the lower bound w.r.t. q(Z)

$$-L(\theta) \ge \sum_{Z} q(Z) \log p(X, Z|\theta) - \sum_{Z} q(Z) \log q(Z)$$

$$= \sum_{Z} q(Z) [\log p(Z|X, \theta) + \log p(X|\theta)] - \sum_{Z} q(Z) \log q(Z)$$

$$= \sum_{Z} q(Z) \log \frac{p(Z|X, \theta)}{q(Z)} + \log p(X|\theta)$$

negative KL-divergence between q(Z) and $p(Z|X,\theta)$ Constant with respect to q(Z)

$$KL(P||Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx$$

- Optimize the lower bound w.r.t. q(Z)
 - $-L(\theta) \ge -KL(q(Z)||p(Z|X,\theta)) + L(\theta)$
 - KL-divergence is non-negative, and equals to zero i.f.f. $q(Z) = p(Z|X,\theta)$
 - A step further: when $q(Z) = p(Z|X,\theta)$, we will get $L(\theta) \ge L(\theta)$, i.e., the lower bound is tight!
 - Other choice of q(Z) cannot lead to this tight bound, but might reduce computational complexity
 - Note: calculation of q(Z) is based on current θ

- Optimize the lower bound w.r.t. q(Z)
 - Optimal solution: $q(Z) = p(Z|X, \theta^t)$

Posterior distribution of Z given current model θ^t

In k-means: this corresponds to assigning instance x_i to its closest cluster centroid c_k $z_i = argmin_k d(c_k, x_i)$

• Optimize the lower bound w.r.t. θ

$$-L(\theta) \ge \sum_{Z} p(Z|X, \theta^{t}) \log p(X, Z|\theta) - \sum_{Z} p(Z|X, \theta^{t}) \log p(Z|X, \theta^{t}) \longleftarrow \text{Constant w.r.t. } \theta$$

$$-\theta^{t+1} = argmax_{\theta} \sum_{Z} p(Z|X, \theta^{t}) \log p(X, Z|\theta)$$

$$= argmax_{\theta} E_{Z|X,\theta} t [\log p(X,Z|\theta)]$$

Expectation of complete data likelihood

In k-means, we are <u>not</u> computing the expectation, but the most probable configuration, and then $c_k = \frac{\sum_i \delta(z_i = c_k) x_i}{\sum_i \delta(z_i = c_k)}$

Expectation Maximization

- EM tries to iteratively maximize likelihood
 - "Complete" data likelihood: $L^{c}(\theta) = \log p(X, \mathbb{Z}|\theta)$
 - Starting from an initial guess $\theta^{(0)}$,
 - **1. E-step**: compute the <u>expectation</u> of the complete data likelihood

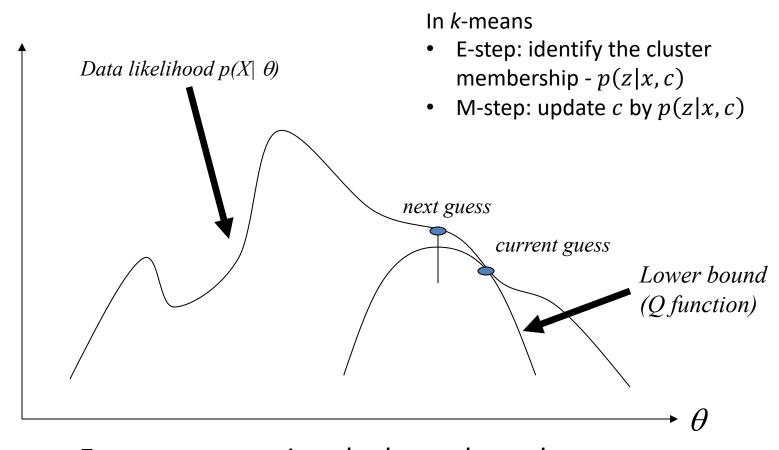
$$Q(\theta; \theta^t) = \mathbf{E}_{Z|X,\theta^t}[L^c(\theta)] = \sum_{\overline{Z}} \underline{p}(\underline{Z}|\underline{X}, \underline{\theta^t}) \log \mathbf{p}(\mathbf{X}, \mathbf{Z}|\theta)$$

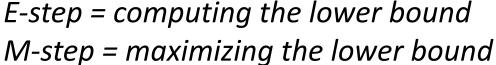
2. M-step: compute $\theta^{(t+1)}$ by maximizing the Q-function

$$\theta^{t+1} = argmax_{\theta}Q(\theta; \theta^t)$$

Key step!

An intuitive understanding of EM





Convergence guarantee

Proof of EM

$$\log p(X|\theta) = \log p(Z,X|\theta) - \log p(Z|X,\theta)$$

Taking expectation with respect to $p(Z|X, \theta^t)$ of both sides:

$$\log p(X|\theta) = \sum_{Z} p(Z|X, \theta^{t}) \log p(Z, X|\theta) - \sum_{Z} p(Z|X, \theta^{t}) \log p(Z|X, \theta)$$

$$= Q(\theta; \theta^{t}) + \underline{H(\theta; \theta^{t})} \leftarrow \text{Cross-entropy}$$

Then the change of log data likelihood between EM iteration is:

$$\log p(X|\theta) - \log p(X|\theta^t) = Q(\theta;\theta^t) + H(\theta;\theta^t) - Q(\theta^t;\theta^t) - H(\theta^t;\theta^t)$$

By Jensen's inequality, we know $H(\theta; \theta^t) \ge H(\theta^t; \theta^t)$, that means

$$\log p(X|\theta) - \log p(X|\theta^t) \ge Q(\theta;\theta^t) - Q(\theta^t;\theta^t) \ge 0$$

M-step guarantee this

What is not guaranteed

- Global optimal is not guaranteed!
 - Likelihood: $L(\theta) = \log \sum_{Z} p(X, Z|\theta)$ is non-convex in most of cases
 - EM boils down to a greedy algorithm
 - Alternative ascent
- Generalized EM
 - E-step: $\hat{q}(Z) = \operatorname{argmin}_{q(Z)} KL(q(Z)||p(Z|X,\theta^t))$
 - M-step: choose θ that improves $Q(\theta; \theta^t)$

k-means v.s. Gaussian Mixture

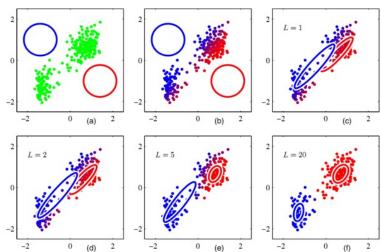
- If we use Euclidean distance in k-means
 - We have explicitly assumed p(x|z) is Gaussian
 - Gaussian Mixture Model (GMM)

•
$$p(x|z) = N(\mu_z, \Sigma_z)$$

•
$$p(x|z) = N(\mu_Z, \Sigma_Z)$$

$$P(x|z) = \frac{1}{\sqrt{2\pi}} \frac{1}{e^{-\frac{(x-\mu_Z)}{2}}} \frac{\Gamma(x-\mu_Z)}{2} \Gamma_{\Sigma_Z} \Gamma_{\Sigma_Z} \Gamma(x-\mu_Z)}$$
• $p(z) = \alpha_Z$ Multinomial

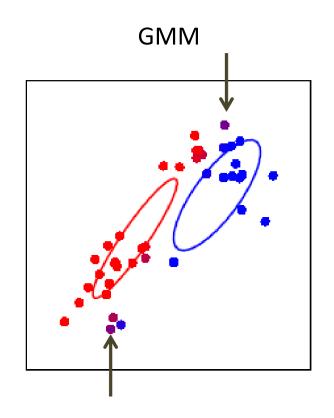
We do not consider cluster size in k-means

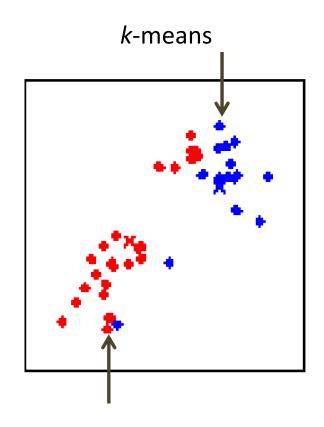


In k-means, we assume equal variance across clusters, so we don't need to estimate them

k-means v.s. Gaussian Mixture

• Soft v.s., hard posterior assignment





k-means in practice

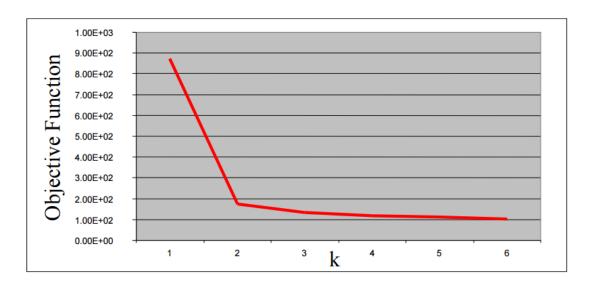
- Extremely fast and scalable
 - One of the most popularly used clustering methods
 - Top 10 data mining algorithms ICDM 2006
 - Can be easily parallelized
 - Map-Reduce implementation
 - Mapper: assign each instance to its closest centroid
 - Reducer: update centroid based on the cluster membership
 - Sensitive to initialization
 - Prone to local optimal

Better initialization: k-means++

- Choose the first cluster center at uniformly random
- 2. Repeat until all *k* centers have been found
 - For each instance compute $D_x = \min_k d(x, c_k)$
 - Choose a new cluster center with probability $p(x) \propto D_x^2 \leftarrow \frac{\text{new center should be far}}{\text{away from existing centers}}$
- 3. Run *k*-means with selected centers as initialization

How to determine *k*

- Vary k to optimize clustering criterion
 - Internal v.s. external validation
 - Cross validation
 - Abrupt change in objective function



How to determine *k*

- Vary k to optimize clustering criterion
 - Internal v.s. external validation
 - Cross validation
 - Abrupt change in objective function
 - Model selection criterion penalizing too many clusters
 - AIC, BIC

