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Clustering as graph cut
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Cut by class label

Cut by cluster label



Recap: external validation

• Given class label Ω on each instance
– Rand index
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Today’s lecture

• k-means clustering 
– A typical partitional clustering algorithm
– Convergence property
• Expectation Maximization algorithm

– Gaussian mixture model
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Partitional clustering algorithms

• Partition instances into exactly k non-
overlapping clusters
– Flat structure clustering
– Users need to specify the cluster size k
– Task: identify the partition of k clusters that 

optimize the chosen partition criterion
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Partitional clustering algorithms

• Partition instances into exactly k non-
overlapping clusters
– Typical criterion
• max∑012𝑑 𝑐0, 𝑐3 − 𝐶 ∑0 𝜎0

– Optimal solution: enumerate every possible 
partition of size k and return the one maximizes 
the criterion
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Unfortunately, this is NP-hard!Let’s approximate this!

Inter-cluster distance
Intra-cluster distance

Optimize this in an alternative way



k-means algorithm
Input: cluster size k, instances {𝑥0}0456 , distance metric 𝑑(⋅,⋅)
Output: cluster membership assignments {𝑧0}0456

1. Initialize k cluster centroids {𝑐0}0457 (randomly if no 
domain knowledge is available)

2. Repeat until no instance changes its cluster membership:
– Decide the cluster membership of instances by assigning them 

to the nearest cluster centroid
𝑧! = 𝑎𝑟𝑔𝑚𝑖𝑛"𝑑(𝑐" , 𝑥!)

– Update the k cluster centroids based on the assigned cluster 
membership

𝑐! =
∑" 𝛿 𝑧" = 𝑐! 𝑥"
∑" 𝛿(𝑧" = 𝑐!)
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Minimize intra distance

Maximize inter distance



k-means illustration
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k-means illustration
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Voronoi
diagram



k-means illustration
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k-means illustration
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k-means illustration
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Complexity analysis

• Decide cluster membership
– 𝑂(𝑘𝑛)

• Compute cluster centroid
– 𝑂(𝑛)

• Assume k-means stops after 𝑙 iterations
– 𝑂(𝑘𝑛𝑙)
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Don’t forget the complexity of 
distance computation, e.g., 
𝑂(𝑉) for Euclidean distance



Convergence property

• Why will k-means stop?
– Answer: it is a special version of Expectation 

Maximization (EM) algorithm, and EM is 
guaranteed to converge

– However, it is only guaranteed to converge to local 
optimal, since k-means (EM) is a greedy algorithm
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Probabilistic interpretation of clustering

• The density model of 𝑝 𝑥 is multi-modal
• Each mode represents a sub-population
– E.g., unimodal Gaussian for each group
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Mixture model

𝑝 𝑥 =(
$

𝑝 𝑥 𝑧 𝑝(𝑧)

Unimodal distribution

Mixing proportion

𝑝(𝑥|𝑧 = 1)

𝑝(𝑥|𝑧 = 2)

𝑝(𝑥|𝑧 = 3)



Probabilistic interpretation of clustering

• If 𝑧 is known for every 𝑥
– Estimating 𝑝(𝑧) and 𝑝(𝑥|𝑧) is easy
• Maximum likelihood estimation
• This is Naïve Bayes
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Mixture model

𝑝 𝑥 =(
$

𝑝 𝑥 𝑧 𝑝(𝑧)

Unimodal distribution

Mixing proportion

𝑝(𝑥|𝑧 = 1)

𝑝(𝑥|𝑧 = 2)

𝑝(𝑥|𝑧 = 3)



Probabilistic interpretation of clustering

• But 𝑧 is unknown for all 𝑥
– Estimating 𝑝(𝑧) and 𝑝(𝑥|𝑧) is generally hard
• max

.,0
∑1 log∑2# 𝑝 𝑥1 𝑧1, 𝛽 𝑝(𝑧1|𝛼)

– Appeal to the Expectation Maximization algorithm
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Mixture model

𝑝 𝑥 =(
$

𝑝 𝑥 𝑧 𝑝(𝑧)

Unimodal distribution

Mixing proportion

𝑝 𝑥 𝑧 = 1 ?

𝑝 𝑥 𝑧 = 2 ?

𝑝 𝑥 𝑧 = 3 ?

Usually a constrained 
optimization problem



Introduction to EM

• Parameter estimation
– All data is observable
• Maximum likelihood estimator
• Optimize the analytic form of 𝐿 𝜃 = log𝑝(𝑋|𝜃)

– Missing/unobservable data
• Data: X (observed) + Z (hidden)
• Likelihood: 𝐿 𝜃 = log∑2 𝑝 𝑋, 𝑍 𝜃
• Approximate it!
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Most of cases are intractable 

E.g. cluster membership



Background knowledge

• Jensen's inequality
– For any convex function 𝑓(𝑥) and positive weights 
𝜆,

22

𝑓 (
!

𝜆! 𝑥! ≤(
!

𝜆!𝑓(𝑥!) (
!

𝜆! = 1



Expectation Maximization

• Maximize data likelihood function by pushing 
the lower bound

– 𝐿 𝜃 = log∑7 𝑝 𝑋, Z 𝜃 = log∑7
8 7 9 𝑋, Z 𝜃

8 7
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≥"
!
𝑞 𝑍 log 𝑝 𝑋, 𝑍 𝜃 −"

!
𝑞 𝑍 log 𝑞(𝑍)Jensen's inequality

𝑓 𝐸 𝑥 ≥ 𝐸[𝑓(𝑥)]

Lower bound!

Components we need to tune when 
optimizing 𝑳 𝜽 : 𝒒(𝒁) and 𝜽!

Proposal distributions for 𝑍



Intuitive understanding of EM

Data likelihood p(X| q)

q
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Lower bound

Easier to optimize, guarantee 
to improve data likelihood



Expectation Maximization (cont)

• Optimize the lower bound w.r.t. 𝑞(𝑍)
– 𝐿 𝜃 ≥ ∑) 𝑞 𝑍 𝑙𝑜𝑔 𝑝 𝑋, 𝑍 𝜃 − ∑) 𝑞 𝑍 𝑙𝑜𝑔 𝑞(𝑍)
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=/
#
𝑞 𝑍 log 𝑝 𝑍 𝑋, 𝜃 + log 𝑝(𝑋|𝜃) −/

#
𝑞 𝑍 log 𝑞(𝑍)

=/
#
𝑞 𝑍 log

𝑝 𝑍 𝑋, 𝜃
𝑞(𝑍) + log 𝑝(𝑋|𝜃)

negative KL-divergence between 𝑞(𝑍) and 𝑝 𝑍 𝑋, 𝜃 Constant with respect to 𝑞(𝑍)

𝐾𝐿(𝑃| 𝑄 = F𝑃 𝑥 log
𝑃(𝑥)
𝑄(𝑥) 𝑑𝑥



Expectation Maximization (cont)

• Optimize the lower bound w.r.t. 𝑞(𝑍)
– 𝐿 𝜃 ≥ −𝐾𝐿 𝑞(𝑍)||𝑝 𝑍 𝑋, 𝜃 + 𝐿(𝜃)
– KL-divergence is non-negative, and equals to zero i.f.f. 
𝑞 𝑍 = 𝑝 𝑍 𝑋, 𝜃

– A step further: when 𝑞 𝑍 = 𝑝 𝑍 𝑋, 𝜃 , we will get 𝐿 𝜃 ≥
𝐿(𝜃), i.e., the lower bound is tight!

– Other choice of 𝑞 𝑍 cannot lead to this tight bound, but 
might reduce computational complexity

– Note: calculation of 𝑞 𝑍 is based on current 𝜃
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Expectation Maximization (cont)

• Optimize the lower bound w.r.t. 𝑞(𝑍)
– Optimal solution: 𝑞 𝑍 = 𝑝 𝑍|𝑋, 𝜃4
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Posterior distribution of 𝑍 given current model 𝜃K

In k-means: this corresponds to assigning 
instance 𝑥" to its closest cluster centroid 𝑐#
𝑧! = 𝑎𝑟𝑔𝑚𝑖𝑛%𝑑(𝑐% , 𝑥!)



Expectation Maximization (cont)

• Optimize the lower bound w.r.t. 𝜃
– 𝐿 𝜃 ≥ ∑7 𝑝 𝑍|𝑋, 𝜃4 log 𝑝 𝑋, 𝑍 𝜃 −
∑7 𝑝 𝑍|𝑋, 𝜃4 log 𝑝 𝑍|𝑋, 𝜃4

– 𝜃489 = 𝑎𝑟𝑔𝑚𝑎𝑥: ∑7 𝑝 𝑍|𝑋, 𝜃4 𝑙𝑜𝑔 𝑝 𝑋, 𝑍 𝜃
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Constant w.r.t. 𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥:𝐸7|<,:! log 𝑝(𝑋, 𝑍|𝜃)

Expectation of complete data likelihood

In k-means, we are not computing the 
expectation, but the most probable 
configuration, and then 𝑐% =

∑! ' $!()" *!
∑! '($!()")



Expectation Maximization

• EM tries to iteratively maximize likelihood
– “Complete” data likelihood: 𝐿= 𝜃 = log𝑝(𝑋, Z|𝜃)
– Starting from an initial guess q(0),

1. E-step: compute the expectation of the complete data 
likelihood

2. M-step: compute q(t+1) by maximizing the Q-function
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𝑄 𝜃; 𝜃K = E7|S,T$ 𝐿U 𝜃 =C
7
𝑝 𝑍 𝑋, 𝜃K log p X, Z 𝜃

𝜃KVW = 𝑎𝑟𝑔𝑚𝑎𝑥T𝑄 𝜃; 𝜃K Key step!
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An intuitive understanding of EM

Data likelihood p(X| q)

q

current guess
Lower bound
(Q function)

next guess

E-step = computing the lower bound
M-step = maximizing the lower bound

In k-means
• E-step: identify the cluster 

membership - 𝑝 𝑧 𝑥, 𝑐
• M-step: update 𝑐 by 𝑝 𝑧 𝑥, 𝑐



Convergence guarantee

• Proof of EM
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log 𝑝 𝑋 𝜃 = log 𝑝 𝑍, 𝑋 𝜃 − log 𝑝(𝑍|𝑋, 𝜃)

log 𝑝 𝑋 𝜃 ="
!
𝑝(𝑍|𝑋, 𝜃$) log 𝑝 𝑍, 𝑋 𝜃 −"

!
𝑝(𝑍|𝑋, 𝜃$) log 𝑝(𝑍|𝑋, 𝜃)

Taking expectation with respect to 𝑝(𝑍|𝑋, 𝜃$) of both sides:

log 𝑝 𝑋 𝜃 − log 𝑝(𝑋|𝜃$) = 𝑄 𝜃; 𝜃$ + 𝐻 𝜃; 𝜃$ − 𝑄 𝜃$; 𝜃$ − 𝐻(𝜃$; 𝜃$)
Then the change of log data likelihood between EM iteration is:

By Jensen’s inequality, we know 𝐻 𝜃; 𝜃$ ≥ 𝐻 𝜃$; 𝜃$ , that means 

log 𝑝 𝑋 𝜃 − log 𝑝(𝑋|𝜃$) ≥ 𝑄 𝜃; 𝜃$ − 𝑄 𝜃$; 𝜃$ ≥ 0

= 𝑄 𝜃; 𝜃$ + 𝐻(𝜃; 𝜃$) Cross-entropy 

M-step guarantee this



• Global optimal is not guaranteed!
– Likelihood: 𝐿 𝜃 = log∑7 𝑝 𝑋, Z 𝜃 is non-convex 

in most of cases
– EM boils down to a greedy algorithm
• Alternative ascent

• Generalized EM
– E-step: A𝑞 𝑍 = argminD(7)𝐾𝐿 𝑞(𝑍)||𝑝 𝑍 𝑋, 𝜃4

– M-step: choose 𝜃 that improves 𝑄 𝜃; 𝜃4
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What is not guaranteed



k-means v.s. Gaussian Mixture

• If we use Euclidean distance in k-means
– We have explicitly assumed 𝑝(𝑥|𝑧) is Gaussian
– Gaussian Mixture Model (GMM)
• 𝑝 𝑥 𝑧 = 𝑁 𝜇2, Σ2
• 𝑝 𝑧 = 𝛼2
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𝑃 𝑥 𝑧 =
1

2𝜋 %Σ$
𝑒-

.
/ *-0# $1%&' *-0#

Multinomial

𝑃 𝑥 𝑧 =
1
2𝜋

𝑒-
*-0# $(*-0#)

/

In k-means, we assume 
equal variance across 
clusters, so we don’t 
need to estimate them 

We do not 
consider cluster 
size in k-means



k-means v.s. Gaussian Mixture

• Soft v.s., hard posterior assignment
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GMM k-means



k-means in practice

• Extremely fast and scalable
– One of the most popularly used clustering 

methods
• Top 10 data mining algorithms – ICDM 2006

– Can be easily parallelized
• Map-Reduce implementation

– Mapper: assign each instance to its closest centroid
– Reducer: update centroid based on the cluster membership

– Sensitive to initialization
• Prone to local optimal
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Better initialization: k-means++

1. Choose the first cluster center at uniformly 
random

2. Repeat until all k centers have been found
– For each instance compute DE = min

F
𝑑(𝑥, 𝑐G)

– Choose a new cluster center with probability 
𝑝 𝑥 ∝ 𝐷HI

3. Run k-means with selected centers as 
initialization 
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new center should be far 
away from existing centers



How to determine k

• Vary 𝑘 to optimize clustering criterion
– Internal v.s. external validation
– Cross validation
• Abrupt change in objective function
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How to determine k

• Vary 𝑘 to optimize clustering criterion
– Internal v.s. external validation
– Cross validation
• Abrupt change in objective function
• Model selection criterion – penalizing too many clusters

– AIC, BIC
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