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* Describe the pairwise distance via a graph

— Clustering can be obtained via graph cut

Cut by class label

Cut by cluster label




Recap: external validation

 Given class label {2 on each instance

— Rand index
Wi = w;j Wi # W;
Ci = Cj 20 X 20
Ci * Cj 24 \ 72
arr=(r (e (=t =)+ (D () (3)=20
2 2 2 2 2 2 2
cluster 1 cluster 2 cluster 3




Today’s lecture

* k-means clustering
— A typical partitional clustering algorithm

— Convergence property
e Expectation Maximization algorithm

— Gaussian mixture model




Partitional clustering algorithms

* Partition instances into exactly k non-
overlapping clusters
— Flat structure clustering
— Users need to specify the cluster size k
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Partitional clustering algorithms

Partition instances into exactly kK non-
overla pping clusters Optimize this in an alternative way

stef distance
Intra cluster distance

— Typical crlterlon/ Inter-clu
. maXZlild(Cl, CJ) Czlal
— Optimal solution: enumerate every possible

partition of size k and return the one maximizes
the criterion

Let’s approximate this!  Unfortunately, this is NP-hard!




k-means algorithm

Input: cluster size k, instances {xi}’ivzl, distance metric d(-,")
Output: cluster membership assignments {z;}i,

1. Initialize k cluster centroids {c;}¥_, (randomly if no
domain knowledge is available)

2. Repeat until no instance changes its cluster membership:

— Decide the cluster membership of instances by assigning them
to the nearest cluster centroid
z; = argmin,d(cy, X;) Minimize intra distance
— Update the k cluster centroids based on the assigned cluster
membership

_2i6(z = ¢ )xy
* TR 6 = )

Maximize inter distance




k-means illustration
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Voronoi
diagram

k-means illustration
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k-means illustration
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k-means illustration
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k-means illustration
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Complexity analysis

* Decide cluster membership

-0 (k?’l) Don’t forget the complexity of
. distance computation, e.q.,
 Compute cluster centroid O(V) for Euclidean distance
- 0(n)
* Assume k-means stops after [ iterations
— 0(knl)




Convergence property

 Why will k-means stop?

— Answer: it is a special version of Expectation
Maximization (EM) algorithm, and EM is
guaranteed to converge

— However, it is only guaranteed to converge to local
optimal, since k-means (EM) is a greedy algorithm




Probabilistic interpretation of clustering

* The density model of p(x) is multi-modal
 Each mode represents a sub-population

— E.g., unimodal Gaussian for each group

a p(x|z = 2)
4 N\ o OVOO
o . Mixture model
— 3 e
P(xlz = 1) . \ p(x) — Ep(xlz)p(z)

2 4
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Probabilistic interpretation of clustering

* |f z is known for every x
— Estimating p(z) and p(x|z) is easy
 Maximum likelihood estimation
* This is Naive Bayes

2 p(x|z =2)
4 N\ o <>v<><>
o O Mixture model

pixlz=1) > "‘\\ p(x)=;o<x|z>p<z>

S Unimodal distribution

0 : : : ! Mixing proportion
0 1 2 3 4 5

p(x|z = 3)




Probabilistic interpretation of clustering

Usually a constrained

* But z is unknown for all x / optimization problem
— Estimating p(z) and p(x|z)/is generally hard
. maXZilogZzip(inZi,ﬁ)p(ZiIa)

— Appeal to the Expectation Maximization algorithm

p(x|z = 2)?
. o M
4 / o ? f Mixture model
— 123
p(x|z = 1) <\“ N p(x) = Ep(xlz)p(z)
2N @ L 4
\’ ® ¢ : k /
1 ‘e . ¢ Unimodal distribution
°* * N |
" 1 : . . i Mixing pr,oﬁp?rnon

x|z = 3)?
iis p(xlz = 3)




Introduction to EM

e Parameter estimation

— All data is observable
* Maximum likelihood estimator
 Optimize the analytic form of L(8) = logp(X|60)

— Missing/unobservable data e E.g. cluster membership
e Data: X (observed) + Z (hidden)
* Likelihood: L(68) =log )., p(X,Z|0)
* Approximate it! \

Most of cases are intractable




Background knowledge

* Jensen's inequality

— For any convex function f (x) and positive weights

A)
f(ZAixi>Sz/lif(xi) Zﬂi =1

l

9(-) 4 9(-) ¢

Convex Concave
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Expectation Maximization

 Maximize data likelihood function by pushing
the |Ower bound Proposal distributions for Z

A

q(Z)'p(X Z|9)|

— L(6) = log Xz p(X,Z[6) = log ),

J li _(_Zl N _I

ensen's inequality - 71 X 710 71 7

Ty Sy 2 L AD R II0 ) qloga D
Lower bound!

Components we need to tune when
optimizing L(0): q(Z) and 6!




Intuitive understanding of EM

Data likelihood p(X| 6)

Easier to optimize, guarantee
to improve data likelihood

Lower bound




Expectation Maximization (cont)

* Optimize the lower bound w.r.t. g(£)
- L(0) 2X7q(Z)logp(X,Z|0) — X7 q(Z) log q(Z)

= ), a@llogp(Z1X,6) +logp(X|0)] - ) 4(2)logq(2)
\ p(Z|X,0)

=), 4@Dlog™ 5+ logp(X|6)

negative KL-divergence between q(Z) and p(Z|X,6) Constant with respect to q(Z)
P(x)
KL(P||Q) = jP(x) lo dx
(P 8000




Expectation Maximization (cont)

* Optimize the lower bound w.r.t. g(£)

- L(0) = —KL(q(Z)||p(Z1X,6)) + L(6)

— KL-divergence is non-negative, and equals to zero i.f.f.
q(Z) =p(Z]X,0)

— A step further: when q(Z) = p(Z|X, 60), we will get L(0) =
L(0), i.e., the lower bound is tight!

— Other choice of g(Z) cannot lead to this tight bound, but
might reduce computational complexity

— Note: calculation of g(Z) is based on current 6

/1:94-* s,




Expectation Maximization (cont)

* Optimize the lower bound w.r.t. g(£)
— Optimal solution: q(Z) = p(Z|X, %)

Posterior distribution of Z given current model 8°

In k-means: this corresponds to assigning
instance x; to its closest cluster centroid cy,
z; = argming,d(c, X;)




Expectation Maximization (cont)

* Optimize the lower bound w.r.t. 6
—-L(0) = X;p(Z|X,0%) logp(X,Z|0) —
WWW <— Constant w.rt. 0
— 0" = argmaxy ¥, p(Z|X,6%) logp(X,Z|6)

= argmaxgkE ;  gt[logp(X, Z|6)]
!

Expectation of complete data likelihood

In k-means, we are not computing the

expectation, but the most probable

. : 2 0(zi=cp)xi
configuration, and then c,, = ==
fig k= 5, 8(zi=cr)




Expectation Maximization

* EM tries to iteratively maximize likelihood
— “Complete” data likelihood: L°(8) = logp(X,Z|0)

— Starting from an initial guess 000,
1. E-step: compute the expectation of the complete data

likelihood
Q(6;0%) = Eyx ot [L°(8)] = Zzz(_ZP{, 89)log p(X,Z16)
2. M-step: compute 01 by maximizing the Q-function
0t = argmaxyQ(0; 6%) Key step!




An intuitive understanding of EM

In k-means

N o * E-step: identify the cluster
Data likelihood p(X| 0) membership - p(zlx, c)

* M-step: update c by p(z|x, ¢)

next guess

current guess
Lower bound

(O function)

E-step = computing the lower bound

M-step = maximizing the lower bound
s
Pe=t=N 30




Convergence guarantee

* Proof of EM
logp(X|0) = logp(Z,X|8) —logp(Z|X,0)
Taking expectation with respect to p(Z|X, 8!) of both sides:
logp(x16) = ) p(ZIX,0% logp(Z,X16) = ) p(ZIX,0%)logp(ZIX,6)
= Q(0;60%) + H(0;8") <—— Cross-entropy
Then the change of log data likelihood between EM iteration is:
logp(X|6) —logp(X|6%) = Q(6;6%) + H(B;6") — Q(8*;6%) — H(8*; 6")
By Jensen’s inequality, we know H(8; %) > H(8%; 0Y), that means
logp(X]0) —logp(X|6*) = Q(6;0%) — Q(8%6%) =20
N

M-step guarantee this

i)




What is not guaranteed

* Global optimal is not guaranteed!

— Likelihood: L(6) = log ., p(X,Z|0) is non-convex
in most of cases

— EM boils down to a greedy algorithm

e Alternative ascent

e Generalized EM

— E-step: §(Z) = argminq(z)KL(q(ZN|p(Z|X, Ht))
— M-step: choose 0 that improves Q(8; 6°%)




k-means v.s. Gaussian Mixture

 |f we use Euclidean distance in k-means

— We have explicitly assumed p(x|z) is Gaussian

— Gaussian Mixture Model (GMM)

11 _(’C_l‘z)T XBZAT5—1(,_
* p(x|z) = N(u, x,) P(x|z) = *“—zm{)kﬁﬁ’% 271 (x- 1)

* p(Z) = (¢, <+ Multinomial
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k-means v.s. Gaussian Mixture

e Soft v.s., hard posterior assignment

GMM k-means
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k-means in practice

* Extremely fast and scalable

— One of the most popularly used clustering
methods

* Top 10 data mining algorithms —ICDM 2006

— Can be easily parallelized

* Map-Reduce implementation
— Mapper: assign each instance to its closest centroid
— Reducer: update centroid based on the cluster membership

— Sensitive to initialization
* Prone to local optimal




Better initialization: k- means++

1. Choose the first cluster center at uniformly
random

2. Repeat until all k centers have been found

— For each instance compute D, = mkind(x, Cy)

— Choose a new cluster center with probability

D (X) X DJ% new center sh.ou_/d be far
away from existing centers

3. Run k-means with selected centers as
initialization




How to determine k

* Vary k to optimize clustering criterion
— Internal v.s. external validation

— Cross validation
* Abrupt change in objective function
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How to determine k

* Vary k to optimize clustering criterion
— Internal v.s. external validation

— Cross validation
* Abrupt change in objective function

* Model selection criterion — penalizing too many clusters
— AIC, BIC




